Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LncRNA PRBC induces autophagy to promote breast cancer progression through modulating PABPC1-mediated mRNA stabilization

Abstract

Breast cancer is one of the major malignant tumors among women worldwide. Long noncoding RNAs (lncRNAs) have been documented as significant modulators in the development and progression of various cancers; however, the contribution of lncRNAs to breast cancer remains largely unknown. In this study, we found a novel lncRNA (NONHSAT137675) whose expression was significantly increased in the breast cancer tissues. We named the novel lncRNA as lncRNA PRBC (PABPC1-related lncRNA in breast cancer) and identified it as a key lncRNA associated with breast cancer progression and prognosis. Functional analysis displayed that lncRNA PRBC could promote autophagy and progression of breast cancer. Mechanistically, we verified that lncRNA PRBC physically interacted with PABPC1 through RIP assay, and PABPC1 overexpression could reverse the inhibiting effect of lncRNA PRBC knockdown on the malignant behaviors in breast cancer cells. Knockdown of lncRNA PRBC interfered the translocation of PABPC1 from nucleus to cytoplasm as indicated by western blot and IF assays. Significantly, the cytoplasmic location of PABPC1 was required for the interaction between PABPC1 and AGO2, which could be enhanced by lncRNA PRBC overexpression, leading to strengthened recruitment of mRNA to RNA-induced silencing complex (RISC) and thus reinforcing the inhibition efficiency of miRNAs. In general, lncRNA PRBC played a critical role in malignant progression of breast cancer by inducing the cytoplasmic translocation of PABPC1 to further regulate the function of downstream miRNAs. This study provides novel insight on the molecular mechanism of breast cancer progression, and lncRNA PRBC might be a promising therapeutic target and prognostic predictor for breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: LncRNA PRBC is upregulated in breast cancer, and associated with poor prognosis of breast cancer patients.
Fig. 2: LncRNA PRBC knockdown attenuates malignant phenotypes of breast cancer cells.
Fig. 3: LncRNA PRBC promotes breast cancer progression through inducing autophagy.
Fig. 4: LncRNA PRBC physically interacts with PABPC1 protein and regulates its subcellular location.
Fig. 5: PABPC1 knockdown inhibits breast cancer progression and autophagy.
Fig. 6: PABPC1 regulates the biological function of lncRNA PRBC in breast cancer.
Fig. 7: LncRNA PRBC overexpression promotes breast cancer progression in vivo.

Similar content being viewed by others

Data availability

The data in this study are available from the corresponding author upon reasonable request.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72:7–33.

    Article  PubMed  Google Scholar 

  2. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.

    Article  CAS  PubMed  Google Scholar 

  3. Liu P, Wang Z, Ou X, Wu P, Zhang Y, Wu S, et al. The FUS/circEZH2/KLF5/ feedback loop contributes to CXCR4-induced liver metastasis of breast cancer by enhancing epithelial-mesenchymal transition. Mol Cancer. 2022;21:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andrade de Oliveira K, Sengupta S, Yadav AK, Clarke R. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness. Front Endocrinol (Lausanne). 2023;14:1083048.

    Article  PubMed  Google Scholar 

  5. Nemeth K, Bayraktar R, Ferracin M, Calin GA. Non-coding RNAs in disease: from mechanisms to therapeutics. Nat Rev Genet. 2023. https://doi.org/10.1038/s41576-023-00662-1.

  6. Zhang X, Xu X, Song J, Xu Y, Qian H, Jin J, et al. Non-coding RNAs’ function in cancer development, diagnosis and therapy. Biomed Pharmacother. 2023;167:115527.

    Article  CAS  PubMed  Google Scholar 

  7. Huang Y, Ling A, Pareek S, Huang RS. Oncogene or tumor suppressor? Long noncoding RNAs role in patient’s prognosis varies depending on disease type. Transl Res. 2021;230:98–110.

    Article  CAS  PubMed  Google Scholar 

  8. Tang X, Li Y, Li M, Zhou Y, Wen J, Huang Z, et al. The role of long noncoding RNAs in regulating invasion and metastasis of malignant tumors. Anticancer Drugs. 2020;31:319–25.

    Article  CAS  PubMed  Google Scholar 

  9. Wang X, Liu Y, Zhou M, Yu L, Si Z. m6A modified BACE1-AS contributes to liver metastasis and stemness-like properties in colorectal cancer through TUFT1 dependent activation of Wnt signaling. J Exp Clin Cancer Res. 2023;42:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liao H, Wang H, Zheng R, Yu Y, Zhang Y, Lv L, et al. LncRNA CARMN suppresses EMT through inhibiting transcription of MMP2 activated by DHX9 in breast cancer. Cell Signal. 2023;113:110943.

    Article  PubMed  Google Scholar 

  11. He X, Chai P, Li F, Zhang L, Zhou C, Yuan X, et al. A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3. Mol Cancer. 2020;19:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu L, Liu Z, Liu Q, Wu W, Lin P, Liu X, et al. LncRNA INHEG promotes glioma stem cell maintenance and tumorigenicity through regulating rRNA 2’-O-methylation. Nat Commun. 2023;14:7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng R, Gao F, Mao Z, Xiao Y, Yuan L, Huang Z, et al. LncRNA BCCE4 genetically enhances the PD-L1/PD-1 interaction in smoking-related bladder cancer by modulating miR-328-3p-USP18 signaling. Adv Sci (Weinh). 2023;10:e2303473.

    Article  PubMed  Google Scholar 

  14. Chen JL, Wu X, Yin D, Jia XH, Chen X, Gu ZY, et al. Autophagy inhibitors for cancer therapy: small molecules and nanomedicines. Pharm Ther. 2023;249:108485.

    Article  CAS  Google Scholar 

  15. Lei Y, Klionsky DJ. Transcriptional regulation of autophagy and its implications in human disease. Cell Death Differ. 2023;30:1416–29.

    Article  PubMed  Google Scholar 

  16. Yu YS, Kim H, Kim KI, Baek SH. Epigenetic regulation of autophagy by histone-modifying enzymes under nutrient stress. Cell Death Differ. 2023;30:1430–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang R, Wang J, Du Y, Yu Z, Wang Y, Jiang Y, et al. CDK5 destabilizes PD-L1 via chaperon-mediated autophagy to control cancer immune surveillance in hepatocellular carcinoma. J Immunother Cancer. 2023;11:e007529.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Seo G, McKinley J, Wang W MAP4K2 connects the Hippo pathway to autophagy in response to energy stress. Autophagy. 2023:1-3. https://doi.org/10.1080/15548627.2023.2280876.

  19. Chadet S, Allard J, Brisson L, Lopez-Charcas O, Lemoine R, Heraud A, et al. P2x4 receptor promotes mammary cancer progression by sustaining autophagy and associated mesenchymal transition. Oncogene. 2022;41:2920–31.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Yang L, Wu P, Li X, Tang Y, Ou X, et al. The circROBO1/KLF5/FUS feedback loop regulates the liver metastasis of breast cancer by inhibiting the selective autophagy of afadin. Mol Cancer. 2022;21:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de la Cruz-Ojeda P, Flores-Campos R, Navarro-Villaran E, Muntane J. The role of non-coding RNAs in autophagy during carcinogenesis. Front Cell Dev Biol. 2022;10:799392.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M, et al. LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis. 2022;13:98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Li X, Lin F, Sun H, Lin Y, Wang Z, et al. The lnc-CTSLP8 upregulates CTSL1 as a competitive endogenous RNA and promotes ovarian cancer metastasis. J Exp Clin Cancer Res. 2021;40:151.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Afonina E, Stauber R, Pavlakis GN. The human poly(A)-binding protein 1 shuttles between the nucleus and the cytoplasm. J Biol Chem. 1998;273:13015–21.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang H, Sheng C, Yin Y, Wen S, Yang G, Cheng Z, et al. PABPC1 interacts with AGO2 and is responsible for the microRNA mediated gene silencing in high grade hepatocellular carcinoma. Cancer Lett. 2015;367:49–57.

    Article  CAS  PubMed  Google Scholar 

  26. Ibragimova MK, Tsyganov MM, Kravtsova EA, Tsydenova IA, Litviakov NV. Organ-specificity of breast cancer metastasis. Int J Mol Sci. 2023;24.

  27. Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20:629–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu SJ, Dang HX, Lim DA, Feng FY, Maher CA. Long noncoding RNAs in cancer metastasis. Nat Rev Cancer. 2021;21:446–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen P, Zeng Z, Wang J, Cao W, Song C, Lei S, et al. Long noncoding RNA LINC00857 promotes pancreatic cancer proliferation and metastasis by regulating the miR-130b/RHOA axis. Cell Death Discov. 2022;8:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang N, Cui Y, Liang X, Han D, Zheng X, Wu A, et al. Long Noncoding RNA LINC00857 Promotes Proliferation, Migration, and Invasion of Colorectal Cancer Cell through miR-1306/Vimentin Axis. Comput Math Methods Med. 2021;2021:5525763.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aldayyeni H, Hjazi A, Shahab S, Gupta J, Alsaab HO, Motea YH, et al. Functions, mechanisms, and clinical applications of lncRNA LINC00857 in cancer pathogenesis. Hum Cell. 2023;36:1656–71.

    Article  CAS  PubMed  Google Scholar 

  32. Bian Z, Zhang J, Li M, Feng Y, Wang X, Zhang J, et al. LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res. 2018;24:4808–19.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Xu S, Xia H, Gao Z, Huang R, Tang E, et al. Long noncoding RNA FEZF1-AS1 in human cancers. Clin Chim Acta. 2019;497:20–26.

    Article  CAS  PubMed  Google Scholar 

  34. Khizar H, Hu Y, Wu Y, Yang J. The role and implication of autophagy in cholangiocarcinoma. Cell Death Discov. 2023;9:332.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer. 2020;19:12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Debnath J, Gammoh N, Ryan KM. Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 2023;24:560–75.

    Article  CAS  PubMed  Google Scholar 

  37. Russell RC, Guan KL. The multifaceted role of autophagy in cancer. EMBO J. 2022;41:e110031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Q, Ma J, Wei J, Meng W, Wang Y, Shi M. lncRNA SNHG11 promotes gastric cancer progression by activating the Wnt/beta-catenin pathway and oncogenic autophagy. Mol Ther. 2021;29:1258–78.

    Article  CAS  PubMed  Google Scholar 

  39. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.

    Article  CAS  PubMed  Google Scholar 

  40. Wang MQ, Zhu WJ, Gao P. New insights into long non-coding RNAs in breast cancer: biological functions and therapeutic prospects. Exp Mol Pathol. 2021;120:104640.

    Article  CAS  PubMed  Google Scholar 

  41. Dong Q, Qiu H, Piao C, Li Z, Cui X. LncRNA SNHG4 promotes prostate cancer cell survival and resistance to enzalutamide through a let-7a/RREB1 positive feedback loop and a ceRNA network. J Exp Clin Cancer Res. 2023;42:209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, et al. Long non-coding RNAs as epigenetic regulators in cancer. Curr Pharm Des. 2019;25:3563–77.

    Article  CAS  PubMed  Google Scholar 

  43. Sharma S, Kajjo S, Harra Z, Hasaj B, Delisle V, Ray D, et al. Uncovering a mammalian neural-specific poly(A) binding protein with unique properties. Genes Dev. 2023;37:760–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qi Y, Wang M, Jiang Q. PABPC1-mRNA stability, protein translation and tumorigenesis. Front Oncol. 2022;12:1025291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Y, Chen C, Liu Z, Guo H, Lu W, Hu W, et al. PABPC1-induced stabilization of IFI27 mRNA promotes angiogenesis and malignant progression in esophageal squamous cell carcinoma through exosomal miRNA-21-5p. J Exp Clin Cancer Res. 2022;41:111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kourtidis A, Necela B, Lin WH, Lu R, Feathers RW, Asmann YW, et al. Cadherin complexes recruit mRNAs and RISC to regulate epithelial cell signaling. J Cell Biol. 2017;216:3073–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tritschler F, Huntzinger E, Izaurralde E. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of deja vu. Nat Rev Mol Cell Biol. 2010;11:379–84.

    Article  CAS  PubMed  Google Scholar 

  48. Moretti F, Kaiser C, Zdanowicz-Specht A, Hentze MW. PABP and the poly(A) tail augment microRNA repression by facilitated miRISC binding. Nat Struct Mol Biol. 2012;19:603–8.

    Article  CAS  PubMed  Google Scholar 

  49. Eniafe J, Jiang S. MicroRNA-99 family in cancer and immunity. Wiley Interdiscip Rev RNA. 2021;12:e1635.

    Article  CAS  PubMed  Google Scholar 

  50. Yang F, Peng ZX, Ji WD, Yu JD, Qian C, Liu JD, et al. LncRNA CCAT1 Upregulates ATG5 to Enhance Autophagy and Promote Gastric Cancer Development by Absorbing miR-140-3p. Dig Dis Sci. 2022;67:3725–41.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Wang H, Liu Q, Dai S, Tian G, Wei X, et al. LncRNA CCAT1 facilitates the progression of gastric cancer via PTBP1-mediated glycolysis enhancement. J Exp Clin Cancer Res. 2023;42:246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miao H, Wang L, Zhan H, Dai J, Chang Y, Wu F, et al. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 2019;15:e1008144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garbo S, Tripodi M, Battistelli C. lncRNA HOTAIR functions and therapeutic perspectives. Oncoscience. 2022;9:49–51.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Xia Y, Xiao X, Deng X, Zhang F, Zhang X, Hu Q, et al. Targeting long non-coding RNA ASBEL with oligonucleotide antagonist for breast cancer therapy. Biochem Biophys Res Commun. 2017;489:386–92.

    Article  CAS  PubMed  Google Scholar 

  55. Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, et al. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharm Res. 2023;187:106582.

    Article  CAS  Google Scholar 

  56. Connerty P, Moles E, de Bock CE, Jayatilleke N, Smith JL, Meshinchi S, et al. Development of siRNA-loaded lipid nanoparticles targeting long non-coding RNA LINC01257 as a novel and safe therapeutic approach for t(8;21) pediatric acute myeloid leukemia. Pharmaceutics. 2021;13:1681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu X, Zhang G, Yu T, Liu J, Chai X, Yin D, et al. CL4-modified exosomes deliver lncRNA DARS-AS1 siRNA to suppress triple-negative breast cancer progression and attenuate doxorubicin resistance by inhibiting autophagy. Int J Biol Macromol. 2023;250:126147.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang H, Xu HB, Kurban E, Luo HW. LncRNA SNHG14 promotes hepatocellular carcinoma progression via H3K27 acetylation activated PABPC1 by PTEN signaling. Cell Death Dis. 2020;11:646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Su R, Ma J, Zheng J, Liu X, Liu Y, Ruan X, et al. PABPC1-induced stabilization of BDNF-AS inhibits malignant progression of glioblastoma cells through STAU1-mediated decay. Cell Death Dis. 2020;11:81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. An T, Deng L, Wang Y, Yang Z, Chai C, Ouyang J, et al. The prognostic impacts of PABPC1 expression on gastric cancer patients. Fut Oncol. 2021;17:4471–9.

    Article  CAS  Google Scholar 

  61. Feng C, Han YH, Qi N, Li J, Sheng QH, Liu Y, et al. Functional implications of PABPC1 in the development of ovarian cancer. Open Med (Wars). 2021;16:805–15.

    Article  CAS  PubMed  Google Scholar 

  62. Dong H, Wang W, Mo S, Liu Q, Chen X, Chen R, et al. Long non-coding RNA SNHG14 induces trastuzumab resistance of breast cancer via regulating PABPC1 expression through H3K27 acetylation. J Cell Mol Med. 2018;22:4935–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li TJ, Jin KZ, Zhou HY, Liao ZY, Zhang HR, Shi SM, et al. Deubiquitinating PABPC1 by USP10 upregulates CLK2 translation to promote tumor progression in pancreatic ductal adenocarcinoma. Cancer Lett. 2023;576:216411.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Special Foundation for Taishan Scholars (No. ts20190971), Special Support Plan for National High Level Talents (Ten Thousand Talents Program W01020103), Foundation from Clinical Research Center of Shandong University (No.2020SDUCRCA015), Qilu Hospital Clinical New Technology Developing Foundation (No. 2019-3).

Author information

Authors and Affiliations

Authors

Contributions

YL, BC, PS and QY conceived the study. FX, LL, YW, DL, FY, YL, YJ and LW helped to perform the experiments. YL, BC, WZ and LW analyzed the data. XK and PS collected clinical samples. YL, BC, PS and QY wrote and revised the paper. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Peng Su or Qifeng Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Chen, B., Xu, F. et al. LncRNA PRBC induces autophagy to promote breast cancer progression through modulating PABPC1-mediated mRNA stabilization. Oncogene 43, 1019–1032 (2024). https://doi.org/10.1038/s41388-024-02971-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-02971-z

Search

Quick links