Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression

Abstract

Chromatin accessibility is central to basal and inducible gene expression. Through ATAC-seq experiments in estrogen receptor-positive (ER+) breast cancer cell line MCF-7 and integration with multi-omics data, we found estradiol (E2) induced chromatin accessibility changes in a small number of breast cancer-relevant E2-regulated genes. As expected, open chromatin regions associated with E2-inducible gene expression showed enrichment of estrogen response element (ERE) and those associated with E2-repressible gene expression were enriched for ERE, PBX1, and PBX3. While a significant number of open chromatin regions showed pioneer factor FOXA1 occupancy in the absence of E2, E2-treatment further enhanced FOXA1 occupancy suggesting that ER–E2 enhances chromatin occupancy of FOXA1 to a subset of E2-regulated genes. Surprisingly, promoters of 80% and enhancers of 60% of E2-inducible genes displayed closed chromatin configuration both in the absence and presence of E2. Integration of ATAC-seq data with ERα ChIP-seq data revealed that ~40% ERα binding sites in the genome are found in chromatin regions that are not accessible as per ATAC-seq. Such ERα binding regions were enriched for binding sites of multiple nuclear receptors including ER, ESRRB, ERRγ, COUP-TFII (NR2F2), RARα, EAR2 as well as traditional pioneer factors FOXA1 and GATA3. Similar data were also obtained when ERα ChIP-seq data were integrated with MNase-seq and DNase-seq data sets. In summation, our results reveal complex mechanisms of ER–E2 interaction with nucleosomes. Notably, “closed chromatin” configuration as defined by ATAC-seq or by other techniques is not necessarily associated with lack of gene expression and technical limitations may preclude ATAC-seq to demonstrate accessibility of chromatin regions that are bound by ERα.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: E2-regulated changes in chromatin accessibility in MCF-7 cells.
Fig. 2: Association between chromatin accessibility and E2-regulated gene expression.
Fig. 3: E2 alters chromatin accessibility of widely studied E2-regulated genes.
Fig. 4: Motif enrichment analyses of regulatory regions defined as accessible or closed as per ATAC-seq.
Fig. 5: Integration of ATAC-seq data with ERα ChIP-seq data.
Fig. 6: Validation of RNA-seq data of select E2-inducible and E2-repressed genes and chromatin modifications in corresponding genes.
Fig. 7: Integration of multiple “omics” data to establish relationship between chromatin accessibility (ATAC-seq), RNA polymerase II activity (GRO-seq), and DNA–RNA hybrid formation (DRIP-seq) with E2-regulated gene expression (RNA-seq).

Similar content being viewed by others

Data availability

All high-throughput data are available in GSE144580.

References

  1. Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer. 2018;25:R385–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cheung E, Kraus WL. Genomic analyses of hormone signaling and gene regulation. Annu Rev Physiol. 2010;72:191–218.

    Article  CAS  PubMed  Google Scholar 

  3. Ali S, Coombes RC. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer. 2002;2:101–12.

    Article  PubMed  Google Scholar 

  4. Lupien M, Eeckhoute J, Meyer CA, Wang Q, Zhang Y, Li W, et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell. 2008;132:958–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zaret KS, Carroll JS. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 2011;25:2227–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Magnani L, Ballantyne EB, Zhang X, Lupien M. PBX1 genomic pioneer function drives ERalpha signaling underlying progression in breast cancer. PLoS Genet. 2011;7:e1002368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012;12:381–5.

    Article  CAS  PubMed  Google Scholar 

  8. Paakinaho V, Swinstead EE, Presman DM, Grontved L, Hager GL. Meta-analysis of chromatin programming by steroid receptors. Cell Rep. 2019;28:3523–34.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang G, Wang X, Sheng D, Zhou L, Liu Y, Xu C, et al. Cooperativity of co-factor NR2F2 with pioneer factors GATA3, FOXA1 in promoting ERalpha function. Theranostics. 2019;9:6501–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Welboren WJ, van Driel MA, Janssen-Megens EM, van Heeringen SJ, Sweep FC, Span PN, et al. ChIP-Seq of ERalpha and RNA polymerase II defines genes differentially responding to ligands. EMBO J. 2009;28:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dumelie JG, Jaffrey SR. Defining the location of promoter-associated R-loops at near-nucleotide resolution using bisDRIP-seq. Elife. 2017;6:e28306.

  13. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122:33–43.

    Article  CAS  PubMed  Google Scholar 

  14. Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, et al. Genome-wide analysis of estrogen receptor binding sites. Nat Genet. 2006;38:1289–97.

    Article  CAS  PubMed  Google Scholar 

  15. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  Google Scholar 

  16. Mueller B, Mieczkowski J, Kundu S, Wang P, Sadreyev R, Tolstorukov MY, et al. Widespread changes in nucleosome accessibility without changes in nucleosome occupancy during a rapid transcriptional induction. Genes Dev. 2017;31:451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guertin MJ, Zhang X, Anguish L, Kim S, Varticovski L, Lis JT, et al. Targeted H3R26 deimination specifically facilitates estrogen receptor binding by modifying nucleosome structure. PLoS Genet. 2014;10:e1004613.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao T, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res. 2020;48:D58–64.

    CAS  PubMed  Google Scholar 

  19. Abba MC, Hu Y, Sun H, Drake JA, Gaddis S, Baggerly K, et al. Gene expression signature of estrogen receptor alpha status in breast cancer. BMC Genom. 2005;6:37.

    Article  Google Scholar 

  20. Wu Y, Zhang Z, Cenciarini ME, Proietti CJ, Amasino M, Hong T, et al. Tamoxifen resistance in breast cancer is regulated by the EZH2-ERalpha-GREB1 transcriptional axis. Cancer Res. 2018;78:671–84.

    Article  CAS  PubMed  Google Scholar 

  21. Massarweh S, Osborne CK, Creighton CJ, Qin L, Tsimelzon A, Huang S, et al. Tamoxifen resistance in breast tumors is driven by growth factor receptor signaling with repression of classic estrogen receptor genomic function. Cancer Res. 2008;68:826–33.

    Article  CAS  PubMed  Google Scholar 

  22. Goswami CP, Nakshatri H. PROGgeneV2: enhancements on the existing database. BMC Cancer. 2014;14:970.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature. 2009;459:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato S, Arimura Y, Kujirai T, Harada A, Maehara K, Nogami J, et al. Biochemical analysis of nucleosome targeting by Tn5 transposase. Open Biol. 2019;9:190116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Z, Merkurjev D, Yang F, Li W, Oh S, Friedman MJ, et al. Enhancer activation requires trans-recruitment of a mega transcription factor complex. Cell. 2014;159:358–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang F, Ma Q, Liu Z, Li W, Tan Y, Jin C, et al. Glucocorticoid receptor:MegaTrans switching mediates the repression of an ERalpha-Regulated transcriptional program. Mol Cell. 2017;66:321–31.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Bosscher K, Desmet SJ, Clarisse D, Estebanez-Perpina E, Brunsveld L. Nuclear receptor crosstalk-defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol. 2020;16:363–77.

  29. Murakami S, Li R, Nagari A, Chae M, Camacho CV, Kraus WL. Distinct roles for BET family members in estrogen receptor alpha enhancer function and gene regulation in breast cancer cells. Mol Cancer Res. 2019;17:2356–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Brambati A, Zardoni L, Nardini E, Pellicioli A, Liberi G. The dark side of RNA:DNA hybrids. Mutat Res. 2020;784:108300.

    Article  CAS  Google Scholar 

  31. Castellano-Pozo M, Santos-Pereira JM, Rondon AG, Barroso S, Andujar E, Perez-Alegre M, et al. R loops are linked to histone H3 S10 phosphorylation and chromatin condensation. Mol Cell. 2013;52:583–90.

    Article  CAS  PubMed  Google Scholar 

  32. Costantino L, Koshland D. The Yin and Yang of R-loop biology. Curr Opin Cell Biol. 2015;34:39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D’Souza AD, Belotserkovskii BP, Hanawalt PC. A novel mode for transcription inhibition mediated by PNA-induced R-loops with a model in vitro system. Biochim Biophys Acta Gene Regul Mech. 2018;1861:158–66.

    Article  PubMed  Google Scholar 

  34. Stork CT, Bocek M, Crossley MP, Sollier J, Sanz LA, Chedin F, et al. Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife. 2016;5:e17548.

  35. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986;320:134–9.

    Article  CAS  PubMed  Google Scholar 

  36. Glont SE, Chernukhin I, Carroll JS. Comprehensive genomic analysis reveals that the pioneering function of FOXA1 is independent of hormonal signaling. Cell Rep. 2019;26:2558–65.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nardini M, Gnesutta N, Donati G, Gatta R, Forni C, Fossati A, et al. Sequence-specific transcription factor NF-Y displays histone-like DNA binding and H2B-like ubiquitination. Cell. 2013;152:132–43.

    Article  CAS  PubMed  Google Scholar 

  38. Pham D, Moseley CE, Gao M, Savic D, Winstead CJ, Sun M, et al. Batf pioneers the reorganization of chromatin in developing effector T cells via Ets1-dependent recruitment of Ctcf. Cell Rep. 2019;29:1203–20.e07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nardone V, Chaves-Sanjuan A, Nardini M. Structural determinants for NF-Y/DNA interaction at the CCAAT box. Biochim Biophys Acta Gene Regul Mech. 2017;1860:571–80.

    Article  CAS  PubMed  Google Scholar 

  40. Meers MP, Janssens DH, Henikoff S. Pioneer factor-nucleosome binding events during differentiation are motif encoded. Mol Cell. 2019;75:562–75.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Iwafuchi-Doi M, Donahue G, Kakumanu A, Watts JA, Mahony S, Pugh BF, et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation. Mol Cell. 2016;62:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Drouin J. Minireview: pioneer transcription factors in cell fate specification. Mol Endocrinol. 2014;28:989–98.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Esnault C, Gualdrini F, Horswell S, Kelly G, Stewart A, East P, et al. ERK-induced activation of TCF family of SRF cofactors initiates a chromatin modification cascade associated with transcription. Mol Cell. 2017;65:1081–95.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cocce KJ, Jasper JS, Desautels TK, Everett L, Wardell S, Westerling T, et al. The lineage determining factor GRHL2 collaborates with FOXA1 to establish a targetable pathway in endocrine therapy-resistant breast cancer. Cell Rep. 2019;29:889–903.e810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Oldfield AJ, Yang P, Conway AE, Cinghu S, Freudenberg JM, Yellaboina S, et al. Histone-fold domain protein NF-Y promotes chromatin accessibility for cell type-specific master transcription factors. Mol Cell. 2014;55:708–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res. 2013;23:1195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhu C, Li L, Zhang Z, Bi M, Wang H, Su W, et al. A non-canonical role of YAP/TEAD is required for activation of estrogen-regulated enhancers in breast cancer. Mol Cell. 2019;75:791–806.e798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu Z, Tjian R. Visualizing transcription factor dynamics in living cells. J Cell Biol. 2018;217:1181–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chung CY, Ma Z, Dravis C, Preissl S, Poirion O, Luna G, et al. Single-cell chromatin analysis of mammary gland development reveals cell-state transcriptional regulators and lineage relationships. Cell Rep. 2019;29:495–510.e496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Anderson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet. 2020;21:71–87.

  51. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I, Hawkins M, et al. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell. 2016;165:593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhuang T, Zhu J, Li Z, Lorent J, Zhao C, Dahlman-Wright K, et al. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells. Oncotarget. 2015;6:43853–68.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell. 2011;145:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bhat-Nakshatri P, Wang G, Appaiah H, Luktuke N, Carroll JS, Geistlinger TR, et al. AKT Alters genome-wide estrogen receptor alpha binding and impacts estrogen signaling in breast cancer. Mol Cell Biol. 2008;28:7487–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Susan G Komen for the Cure (SAC110025 to HN) supported this work. We also thank the members of the Medical Genomics core for sequencing and help with data analyses.

Author information

Authors and Affiliations

Authors

Contributions

DC: bioinformatics data analyses and paper writing. TP: biologic assays including cell culture, qRT-PCR, and ChIP-PCR. PN: qRT-PCRs and paper writing/editing. XC: ATAC-seq and paper editing. YL: bioinformatics, data interpretation, and paper editing. YW: ATAC-seq, data interpretation, and paper editing. HN: study supervision, data interpretation, and paper writing.

Corresponding authors

Correspondence to Yue Wang or Harikrishna Nakshatri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Parker, T.M., Bhat-Nakshatri, P. et al. Nonlinear relationship between chromatin accessibility and estradiol-regulated gene expression. Oncogene 40, 1332–1346 (2021). https://doi.org/10.1038/s41388-020-01607-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01607-2

This article is cited by

Search

Quick links