Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel HDGF-ALCAM axis promotes the metastasis of Ewing sarcoma via regulating the GTPases signaling pathway

Abstract

Ewing sarcoma (ES) is a type of highly aggressive pediatric tumor in bones and soft tissues and its metastatic spread remains the most powerful predictor of poor outcome. We previously identified that the transcription factor hepatoma-derived growth factor (HDGF) promotes ES tumorigenesis. However, the mechanisms underlying ES metastasis remain unclear. Here, we show that HDGF drives ES metastasis in vitro and in vivo, and HDGF reduces metastasis-free survival (MFS) in two independent large cohorts of human ES patients. Integrative analyses of HDGF ChIP-seq and gene expression profiling in ES cells reveal that HDGF regulates multiple metastasis-associated genes, among which activated leukocyte cell adhesion molecule (ALCAM) emerges as a major HDGF target and a novel metastasis-suppressor in ES. HDGF down-regulates ALCAM, induces expression and activation of the downstream effectors Rho-GTPase Rac1 and Cdc42, and promotes actin cytoskeleton remodeling and cell-matrix adhesion. In addition, repression of ALCAM and activation of Rac1 and Cdc42 are required for the pro-metastatic functions of HDGF in vitro. Moreover, analyses in murine models with ES tumor orthotopic implantation and experimental metastasis, as well as in human ES samples, demonstrate the associations among HDGF, ALCAM, and GTPases expression levels. Furthermore, high HDGF/low ALCAM expression define a subgroup of patients harboring the worst MFS. These findings suggest that the HDGF/ALCAM/GTPases axis represents a promising therapeutic target for limiting ES metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: High nuclear HDGF expression is significantly associated with short metastasis-free survival of ES patients.
Fig. 2: HDGF promotes metastasis-relevant traits in vitro and metastasis in vivo in ES cell lines.
Fig. 3: HDGF promotes actin cytoskeleton reorganization, cell-matrix adhesion, and GTPases activation in ES cells.
Fig. 4: HDGF directly targets ALCAM.
Fig. 5: ALCAM suppresses intrinsic metastasis-relevant traits in ES cell lines in vitro.
Fig. 6: Enhanced expression of ALCAM notably impairs HDGF-mediated pro-metastatic traits in ES cells.
Fig. 7: ALCAM levels correlate inversely with metastasis in human ES.

Similar content being viewed by others

References

  1. Riggi N, Stamenkovic I. The biology of Ewing sarcoma. Cancer Lett. 2007;254:1–10.

    CAS  PubMed  Google Scholar 

  2. Granowetter L, Womer R, Devidas M, Krailo M, Wang C, Bernstein M, et al. Dose-intensified compared with standard chemotherapy for nonmetastatic Ewing sarcoma family of tumors: a Children’s Oncology Group Study. J Clin Oncol. 2009;27:2536–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nakamura H, Izumoto Y, Kambe H, Kuroda T, Mori T, Kawamura K, et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem. 1994;269:25143–9.

    CAS  PubMed  Google Scholar 

  4. Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem. 2001;276:37564–8.

    CAS  PubMed  Google Scholar 

  5. Kishima Y, Yamamoto H, Izumoto Y, Yoshida K, Enomoto H, Yamamoto M, et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. J Biol Chem. 2002;277:10315–22.

    CAS  PubMed  Google Scholar 

  6. Nameki N, Tochio N, Koshiba S, Inoue M, Yabuki T, Aoki M, et al. Solution structure of the PWWP domain of the hepatoma-derived growth factor family. Protein Sci. 2005;14:756–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Everett AD. Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol. 2007;8:101.

    PubMed  PubMed Central  Google Scholar 

  8. Yang J, Everett AD. Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein. J Mol Biol. 2009;386:938–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Li H, Zhang F, Shi H, Zhen T, Dai S, et al. Clinical and biological significance of hepatoma-derived growth factor in Ewing’s sarcoma. J Pathol. 2013;231:323–34.

    CAS  PubMed  Google Scholar 

  10. Yang Y, Zhen T, Zhang F, Dai S, Kang L, Liang Y, et al. p53 and hepatoma-derived growth factor expression and their clinicopathological association with Ewing family tumour. J Clin Pathol. 2014;67:235–42.

    PubMed  Google Scholar 

  11. Cotterill SJ, Ahrens S, Paulussen M, Jurgens HF, Voute PA, Gadner H, et al. Prognostic factors in Ewing’s tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol. 2000;18:3108–14.

    CAS  PubMed  Google Scholar 

  12. Nobes CD, Hall A. Rho, rac and cdc42 GTPases: regulators of actin structures, cell adhesion and motility. Biochem Soc Trans. 1995;23:456–9.

    CAS  PubMed  Google Scholar 

  13. Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995;81:53–62.

    CAS  PubMed  Google Scholar 

  14. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature. 1997;390:632–6.

    CAS  PubMed  Google Scholar 

  15. Machesky LM, Hall A. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization. J Cell Biol. 1997;138:913–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Moreau V, Way M. Cdc42 is required for membrane dependent actin polymerization in vitro. FEBS Lett. 1998;427:353–6.

    CAS  PubMed  Google Scholar 

  17. Aspenstrom P, Fransson A, Saras J. Rho GTPases have diverse effects on the organization of the actin filament system. Biochem J. 2004;377:327–37.

    PubMed  PubMed Central  Google Scholar 

  18. Zhang Z, Yang M, Chen R, Su W, Li P, Chen S, et al. IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene. 2014;33:3374–82.

    CAS  PubMed  Google Scholar 

  19. Anderson S, Poudel KR, Roh-Johnson M, Brabletz T, Yu M, Borenstein-Auerbach N, et al. MYC-nick promotes cell migration by inducing fascin expression and Cdc42 activation. Proc Natl Acad Sci USA. 2016;113:E5481–5490.

    CAS  PubMed  Google Scholar 

  20. Kazanietz MG, Caloca MJ. The Rac GTPase in cancer: from old concepts to new paradigms. Cancer Res. 2017;77:5445–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Maldonado MDM, Dharmawardhane S. Targeting Rac and Cdc42 GTPases in Cancer. Cancer Res. 2018;78:3101–11.

    CAS  PubMed  Google Scholar 

  22. Jansen S, Gosens R, Wieland T, Schmidt M. Paving the Rho in cancer metastasis: Rho GTPases and beyond. Pharm Ther. 2018;183:1–21.

    CAS  Google Scholar 

  23. Woldu SL, Hutchinson RC, Krabbe LM, Sanli O, Margulis V. The Rho GTPase signalling pathway in urothelial carcinoma. Nat Rev Urol. 2018;15:83–91.

    CAS  PubMed  Google Scholar 

  24. Wei Y, Chen X, Liang C, Ling Y, Yang X, Ye X, et al. A noncoding regulatory RNAs network driven by Circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology. 2020;71:130–47.

    CAS  PubMed  Google Scholar 

  25. Kung ML, Tsai HE, Hu TH, Kuo HM, Liu LF, Chen SC, et al. Hepatoma-derived growth factor stimulates podosome rosettes formation in NIH/3T3 cells through the activation of phosphatidylinositol 3-kinase/Akt pathway. Biochem Biophys Res Commun. 2012;425:169–76.

    CAS  PubMed  Google Scholar 

  26. Mao J, Xu Z, Fang Y, Wang H, Xu J, Ye J, et al. Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation. Cancer Sci. 2008;99:2120–7.

    CAS  PubMed  Google Scholar 

  27. Wang CH, Davamani F, Sue SC, Lee SC, Wu PL, Tang FM, et al. Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration. Biochem J. 2011;433:127–38.

    CAS  PubMed  Google Scholar 

  28. Bar-Shavit R, Maoz M, Kancharla A, Nag JK, Agranovich D, Grisaru-Granovsky S, et al. G protein-coupled receptors in cancer. Int J Mol Sci. 2016;17:E1320.

    PubMed  Google Scholar 

  29. O’Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer. 2013;13:412–24.

    PubMed  PubMed Central  Google Scholar 

  30. Maldonado MDM, Medina JI, Velazquez L, Dharmawardhane S. Targeting Rac and Cdc42 GEFs in metastatic cancer. Front Cell Dev Biol. 2020;8:201.

    PubMed  PubMed Central  Google Scholar 

  31. Nelissen JM, Peters IM, de Grooth BG, van Kooyk Y, Figdor CG. Dynamic regulation of activated leukocyte cell adhesion molecule-mediated homotypic cell adhesion through the actin cytoskeleton. Mol Biol Cell. 2000;11:2057–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Swart GW. Activated leukocyte cell adhesion molecule (CD166/ALCAM): developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol. 2002;81:313–21.

    CAS  PubMed  Google Scholar 

  33. Masedunskas A, King JA, Tan F, Cochran R, Stevens T, Sviridov D, et al. Activated leukocyte cell adhesion molecule is a component of the endothelial junction involved in transendothelial monocyte migration. FEBS Lett. 2006;580:2637–45.

    CAS  PubMed  Google Scholar 

  34. Kijima N, Hosen N, Kagawa N, Hashimoto N, Nakano A, Fujimoto Y, et al. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro Oncol. 2012;14:1254–64.

    CAS  PubMed  Google Scholar 

  35. Yao H, Kim K, Duan M, Hayashi T, Guo M, Morgello S, et al. Cocaine hijacks sigma1 receptor to initiate induction of activated leukocyte cell adhesion molecule: implication for increased monocyte adhesion and migration in the CNS. J Neurosci. 2011;31:5942–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. van Kilsdonk JW, Wilting RH, Bergers M, van Muijen GN, Schalkwijk J, van Kempen LC, et al. Attenuation of melanoma invasion by a secreted variant of activated leukocyte cell adhesion molecule. Cancer Res. 2008;68:3671–9.

    PubMed  Google Scholar 

  37. Penna E, Orso F, Cimino D, Vercellino I, Grassi E, Quaglino E, et al. miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. Cancer Res. 2013;73:4098–111.

    CAS  PubMed  Google Scholar 

  38. Lunter PC, van Kilsdonk JW, van Beek H, Cornelissen IM, Bergers M, Willems PH, et al. Activated leukocyte cell adhesion molecule (ALCAM/CD166/MEMD), a novel actor in invasive growth, controls matrix metalloproteinase activity. Cancer Res. 2005;65:8801–8.

    CAS  PubMed  Google Scholar 

  39. van Kempen LC, Meier F, Egeblad M, Kersten-Niessen MJ, Garbe C, Weidle UH, et al. Truncation of activated leukocyte cell adhesion molecule: a gateway to melanoma metastasis. J Invest Dermatol. 2004;122:1293–301.

    PubMed  Google Scholar 

  40. Sechler M, Parrish JK, Birks DK, Jedlicka P. The histone demethylase KDM3A, and its downstream target MCAM, promote Ewing Sarcoma cell migration and metastasis. Oncogene. 2017;36:4150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Franzetti GA, Laud-Duval K, van der Ent W, Brisac A, Irondelle M, Aubert S, et al. Cell-to-cell heterogeneity of EWSR1-FLI1 activity determines proliferation/migration choices in Ewing sarcoma cells. Oncogene. 2017;36:3505–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Savola S, Klami A, Tripathi A, Niini T, Serra M, Picci P, et al. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors. BMC Cancer. 2009;9:17.

    PubMed  PubMed Central  Google Scholar 

  43. Mendoza-Naranjo A, El-Naggar A, Wai DH, Mistry P, Lazic N, Ayala FR, et al. ERBB4 confers metastatic capacity in Ewing sarcoma. EMBO Mol Med. 2013;5:1087–102.

    PubMed  Google Scholar 

  44. Satterfield L, Shuck R, Kurenbekova L, Allen-Rhoades W, Edwards D, Huang S, et al. miR-130b directly targets ARHGAP1 to drive activation of a metastatic CDC42-PAK1-AP1 positive feedback loop in Ewing sarcoma. Int J Cancer. 2017;141:2062–75.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation in China (81772862 and 81402413 to YY, and 81402000 to HL) and from the Fundamental Research Funds for the Sun Yat-sen Universities (16ykpy42 to YY).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaishun Hu or Anjia Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, Y., Gao, H. et al. A novel HDGF-ALCAM axis promotes the metastasis of Ewing sarcoma via regulating the GTPases signaling pathway. Oncogene 40, 731–745 (2021). https://doi.org/10.1038/s41388-020-01485-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01485-8

This article is cited by

Search

Quick links