Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors

Abstract

The serine/threonine Protein Phosphatase 2A (PP2A) functions as a tumor suppressor by negatively regulating multiple oncogenic signaling pathways. The canonical PP2A holoenzyme comprises a scaffolding subunit (PP2A Aα/β), which serves as the platform for binding of both the catalytic C subunit and one regulatory B subunit. Somatic heterozygous missense mutations in PPP2R1A, the gene encoding the PP2A Aα scaffolding subunit, have been identified across multiple cancer types, but the effects of the most commonly mutated residue, Arg-183, on PP2A function have yet to be fully elucidated. In this study, we used a series of cellular and in vivo models and discovered that the most frequent Aα R183W mutation formed alternative holoenzymes by binding of different PP2A regulatory subunits compared with wild-type Aα, suggesting a rededication of PP2A functions. Unlike wild-type Aα, which suppressed tumorigenesis, the R183W mutant failed to suppress tumor growth in vivo through activation of the MAPK pathway in RAS-mutant transformed cells. Furthermore, cells expressing R183W were less sensitive to MEK inhibitors. Taken together, our results demonstrate that the R183W mutation in PP2A Aα scaffold abrogates the tumor suppressive actions of PP2A, thereby potentiating oncogenic signaling and reducing drug sensitivity of RAS-mutant cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kauko O, Laajala TD, Jumppanen M, Hintsanen P, Suni V, Haapaniemi P, et al. Label-free quantitative phosphoproteomics with novel pairwise abundance normalization reveals synergistic RAS and CIP2A signaling. Sci Rep. 2015;5:13099.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rangarajan A, Hong SJ, Gifford A, Weinberg RA. Species- and cell type-specific requirements for cellular transformation. Cancer Cell. 2004;6:171–83.

    CAS  PubMed  Google Scholar 

  3. Sablina AA, Hector M, Colpaert N, Hahn WC. Identification of PP2A complexes and pathways involved in cell transformation. Cancer Res. 2010;70:10474–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sablina AA, Chen W, Arroyo JD, Corral L, Hector M, Bulmer SE, et al. The tumor suppressor PP2A Abeta regulates the RalA GTPase. Cell. 2007;129:969–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC. Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell. 2004;5:127–36.

    CAS  PubMed  Google Scholar 

  6. Sangodkar J, Perl A, Tohme R, Kiselar J, Kastrinsky DB, Zaware N, et al. Activation of tumor suppressor protein PP2A inhibits KRAS-driven tumor growth. J Clin Investig. 2017;127:2081–90.

    PubMed  Google Scholar 

  7. Kauko O, O’Connor CM, Kulesskiy E, Sangodkar J, Aakula A, Izadmehr S, et al. PP2A inhibition is a druggable MEK inhibitor resistance mechanism in KRAS-mutant lung cancer cells. Sci Transl Med. 2018;10:eaaq1093.

    PubMed  Google Scholar 

  8. Seshacharyulu P, Pandey P, Datta K, Batra SK. Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 2013;335:9–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi Y. Serine/threonine phosphatases: mechanism through structure. Cell. 2009;139:468–84.

    CAS  PubMed  Google Scholar 

  10. Sangodkar J, Farrington CC, McClinch K, Galsky MD, Kastrinsky DB, Narla G. All roads lead to PP2A: exploiting the therapeutic potential of this phosphatase. FEBS J. 2016;283:1004–24.

    CAS  PubMed  Google Scholar 

  11. Zhou J, Pham HT, Ruediger R, Walter G. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A: differences in expression, subunit interaction, and evolution. Biochemical J. 2003;369(Pt 2):387–98.

    CAS  Google Scholar 

  12. Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs. Cell. 1999;96:99–110.

    CAS  PubMed  Google Scholar 

  13. Calin GA, di Iasio MG, Caprini E, Vorechovsky I, Natali PG, Sozzi G, et al. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene. 2000;19:1191–5.

    CAS  PubMed  Google Scholar 

  14. Shih IeM, Panuganti PK, Kuo KT, Mao TL, Kuhn E, Jones S, et al. Somatic mutations of PPP2R1A in ovarian and uterine carcinomas. Am J Pathol. 2011;178:1442–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ruediger R, Pham HT, Walter G. Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene. 2001;20:1892–9.

    CAS  PubMed  Google Scholar 

  16. Haesen D, Abbasi Asbagh L, Derua R, Hubert A, Schrauwen S, Hoorne Y, et al. Recurrent PPP2R1A mutations in uterine cancer act through a dominant-negative mechanism to promote malignant cell growth. Cancer Res. 2016;76:5719–31.

    CAS  PubMed  Google Scholar 

  17. Chen W, Arroyo JD, Timmons JC, Possemato R, Hahn WC. Cancer-associated PP2A Aalpha subunits induce functional haploinsufficiency and tumorigenicity. Cancer Res. 2005;65:8183–92.

    CAS  PubMed  Google Scholar 

  18. Walter G, Ruediger R. Mouse model for probing tumor suppressor activity of protein phosphatase 2A in diverse signaling pathways. Cell Cycle. 2012;11:451–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ruediger R, Ruiz J, Walter G. Human cancer-associated mutations in the Aalpha subunit of protein phosphatase 2A increase lung cancer incidence in Aalpha knock-in and knockout mice. Mol Cell Biol. 2011;31:3832–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Jeong AL, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kamburov A, Lawrence MS, Polak P, Leshchiner I, Lage K, Golub TR, et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc Natl Acad Sci USA. 2015;112:E5486–95.

    CAS  PubMed  Google Scholar 

  22. Rahman M, Nakayama K, Rahman MT, Nakayama N, Katagiri H, Katagiri A, et al. PPP2R1A mutation is a rare event in ovarian carcinoma across histological subtypes. Anticancer Res. 2013;33:113–8.

    CAS  PubMed  Google Scholar 

  23. Hoang LN, McConechy MK, Meng B, McIntyre JB, Ewanowich C, Gilks CB, et al. Targeted mutation analysis of endometrial clear cell carcinoma. Histopathology. 2015;66:664–74.

    PubMed  Google Scholar 

  24. Jones S, Wang TL, Shih Ie M, Mao TL, Nakayama K, Roden R, et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 2010;330:228–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Junk DJ, Cipriano R, Bryson BL, Gilmore HL, Jackson MW. Tumor microenvironmental signaling elicits epithelial-mesenchymal plasticity through cooperation with transforming genetic events. Neoplasia. 2013;15:1100–9.

    PubMed  PubMed Central  Google Scholar 

  26. Pallas DC, Shahrik LK, Martin BL, Jaspers S, Miller TB, Brautigan DL, et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell. 1990;60:167–76.

    CAS  PubMed  Google Scholar 

  27. O’Connor CM, Hoffa MT, Taylor SE, Avelar RA, Narla G. Protein phosphatase 2A Aalpha regulates Abeta protein expression and stability. J Biol Chem. 2019;294:5923–34.

    PubMed  Google Scholar 

  28. Taylor SE, O’Connor CM, Wang Z, Shen G, Song H, Leonard D, et al. The highly recurrent PP2A Aalpha-subunit mutation P179R alters protein structure and impairs PP2A enzyme function to promote endometrial tumorigenesis. Cancer Res. 2019;79:4242–57.

    CAS  PubMed  Google Scholar 

  29. Strack S, Cribbs JT, Gomez L. Critical role for protein phosphatase 2A heterotrimers in mammalian cell survival. J Biol Chem. 2004;279:47732–9.

    CAS  PubMed  Google Scholar 

  30. Casado P, Rodriguez-Prados JC, Cosulich SC, Guichard S, Vanhaesebroeck B, Joel S, et al. Kinase-substrate enrichment analysis provides insights into the heterogeneity of signaling pathway activation in leukemia cells. Sci Signal. 2013;6:rs6.

    PubMed  Google Scholar 

  31. Wiredja DD, Koyuturk M, Chance MR. The KSEA app: a web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics. 2017.

  32. Letourneux C, Rocher G, Porteu F. B56-containing PP2A dephosphorylate ERK and their activity is controlled by the early gene IEX-1 and ERK. EMBO J. 2006;33:3489–91.

    Google Scholar 

  33. Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods. 2011;8:341–6.

    CAS  PubMed  Google Scholar 

  34. Holt SV, Logie A, Davies BR, Alferez D, Runswick S, Fenton S, et al. Enhanced apoptosis and tumor growth suppression elicited by combination of MEK (selumetinib) and mTOR kinase inhibitors (AZD8055). Cancer Res. 2012;72:1804–13.

    CAS  PubMed  Google Scholar 

  35. Roberts PJ, Usary JE, Darr DB, Dillon PM, Pfefferle AD, Whittle MC, et al. Combined PI3K/mTOR and MEK inhibition provides broad antitumor activity in faithful murine cancer models. Clin Cancer Res. 2012;18:5290–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Grinthal A, Adamovic I, Weiner B, Karplus M, Kleckner N. PR65, the HEAT-repeat scaffold of phosphatase PP2A, is an elastic connector that links force and catalysis. Proc Natl Acad Sci USA. 2010;107:2467–72.

    CAS  PubMed  Google Scholar 

  37. Tsytlonok M, Craig PO, Sivertsson E, Serquera D, Perrett S, Best RB, et al. Complex energy landscape of a giant repeat protein. Structure. 2013;21:1954–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15:577–92.

    CAS  PubMed  Google Scholar 

  39. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS, et al. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res. 2009;69:7557–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW. TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci USA. 2011;108:8668–73.

    CAS  PubMed  Google Scholar 

  41. Wiemann SPC, Hu Y, Hunter P, Harbers M, Amiet A, Bethel G, et al. The ORFeome Collaboration: a genome-scale human ORF-clone resource. Nat Methods. 2016;13:191–2.

    Google Scholar 

  42. Schlatzer D, Haqqani AA, Li X, Dobrowolski C, Chance MR, Tilton JC. A targeted mass spectrometry assay for detection of HIV gag protein following induction of latent viral reservoirs. Anal Chem. 2017;89:5325–32.

    CAS  PubMed  Google Scholar 

  43. Mellacheruvu D, Wright Z, Couzens AL, Lambert JP, St-Denis NA, Li T, et al. The CRAPome: a contaminant repository for affinity purification-mass spectrometry data. Nat Methods. 2013;10:730–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Morris JH, Knudsen GM, Verschueren E, Johnson JR, Cimermancic P, Greninger AL, et al. Affinity purification-mass spectrometry and network analysis to understand protein-protein interactions. Nat Protoc. 2014;9:2539–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Knight JDR, Choi H, Gupta GD, Pelletier L, Raught B, Nesvizhskii AI, et al. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat Methods. 2017;14:645–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.

    CAS  PubMed  Google Scholar 

  47. McClinch K, Avelar RA, Callejas D, Izadmehr S, Wiredja D, Perl A, et al. Small-molecule activators of protein phosphatase 2A for the treatment of castration-resistant prostate cancer. Cancer Res. 2018;78:2065–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway knowledgebase. Nucleic acids Res. 2016;44(D1):D481–7.

    CAS  PubMed  Google Scholar 

  49. Abagyan R, Totrov M, Kuznetsov D. ICM- A new method for protein modeling and design: applicataions to docking and structure prediction from the distorted native conformation. J Comput Chem. 1994;15:488–506.

    CAS  Google Scholar 

  50. Doerr S, Harvey MJ, Noe F, De Fabritiis G. HTMD: high-throughput molecular dynamics for molecular discovery. J Chem Theory Comput 2016;12:1845–52.

    CAS  PubMed  Google Scholar 

  51. Case DA, Cheatham TE 3rd, Darden T, Gohlke H, Luo R, Merz KM Jr, et al. The amber biomolecular simulation programs. J Comput Chem 2005;26:1668–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Price DJ, Brooks CL 3rd. A modified TIP3P water potential for simulation with Ewald summation. J Chem Phys. 2004;121:10096–103.

    CAS  PubMed  Google Scholar 

  53. Berendsen HJC, Postma JPM, Gunsteren WFv, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phy. 1984;81:3684–90.

    CAS  Google Scholar 

  54. Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating biomolecular dynamics in the microsecond time scale. J Chem Theory Comput 2009;5:1632–9.

    CAS  PubMed  Google Scholar 

  55. Bonomi M, Barducci A, Parrinello M. Reconstructing the equilibrium Boltzmann distribution from well-tempered metadynamics. J Comput Chem 2009;30:1615–21.

    CAS  PubMed  Google Scholar 

  56. Skliros A, Zimmermann MT, Chakraborty D, Saraswathi S, Katebi AR, Leelananda SP, et al. The importance of slow motions for protein functional loops. Phys Biol. 2012;9:014001.

    PubMed  Google Scholar 

  57. Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–47.

    CAS  PubMed  Google Scholar 

  58. DeLano W PyMOL molecular viewer: Updates and refinements. Abstracts of Papers of the American Chemical Society. 2009;238.

  59. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14:33–8, 27-8.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Young Scientist Foundation and the students who worked on this project through this program, including Aditya Upadhyay. This work was partially supported by the NIH/NCI R01CA181654 (to GN) and T32GM008803 (to CMO). This publication was made possible in part by the Clinical and Translational Science Collaborative of Cleveland, 4UL1TR000439 from the National Center for Advancing Translational Sciences (NCATS) component of the National Institutes of Health and NIH roadmap for Medical Research. This research was supported by the Athymic Animal and Preclinical Therapeutics and Cytometry and Imaging Microscopy cores of the Case Comprehensive Cancer Center at Case Western Reserve University (funded by NIH P30 CA043703). GN is supported by the Pardee-Gerstacker Professorship in Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

CMO and GN designed the research studies. CMO wrote the manuscript and GN edited the manuscript. CMO, DL, DW, RA, ZW, DS, BB, ET, AU, ST, and SH performed experiments and interpreted the data. JS, A-CG, JW, WX, AD, DB, SH, MJ, and GN provided observations and scientific interpretations. All authors discussed results and provided input on the manuscript.

Corresponding author

Correspondence to Goutham Narla.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Connor, C.M., Leonard, D., Wiredja, D. et al. Inactivation of PP2A by a recurrent mutation drives resistance to MEK inhibitors. Oncogene 39, 703–717 (2020). https://doi.org/10.1038/s41388-019-1012-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-1012-2

This article is cited by

Search

Quick links