Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions

A Correction to this article was published on 01 October 2019

This article has been updated

Abstract

The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit SEPT9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FAs), where it is coupled with increased expression of matrix metalloproteinases (MMPs). SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 01 October 2019

    The original version of this Article contained an error in the author affiliations. Vladislav V. Verkhusha was incorrectly associated with the School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland. The correct affiliation is Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.

References

  1. Mostowy S, Cossart P. Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol. 2012;13:183–94.

    Article  CAS  PubMed  Google Scholar 

  2. Osaka M, Rowley JD, Zeleznik-Le NJ. MSF (MLL septin-like fusion), a fusion partner gene of MLL, in a therapy-related acute myeloid leukemia with a t(11;17)(q23; q25). Proc Natl Acad Sci USA. 1999;96:6428–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cerveira N, Bizarro S, Teixeira MR. MLL-SEPTIN gene fusions in hematological malignancies. Biol Chem. 2011;392:713–24.

    Article  CAS  PubMed  Google Scholar 

  4. McDade SS, Hall PA, Russell SE. Translational control of SEPT9 isoforms is perturbed in disease. Hum Mol Genet. 2007;16:742–52.

    Article  CAS  PubMed  Google Scholar 

  5. Connolly D, Hoang HG, Adler E, Tazearslan C, Simmons N, Bernard VV, et al. Septin 9 amplification and isoform-specific expression in peritumoral and tumor breast tissue. Biol Chem. 2014;395:157–67.

    Article  CAS  PubMed  Google Scholar 

  6. Russell SE, McIlhatton MA, Burrows JF, Donaghy PG, Chanduloy S, Petty EM, et al. Isolation and mapping of a human septin gene to a region on chromosome 17q, commonly deleted in sporadic epithelial ovarian tumors. Cancer Res. 2000;60:4729–34.

    CAS  PubMed  Google Scholar 

  7. Sorensen AB, Warming S, Fuchtbauer EM, Pedersen FS. Alternative splicing, expression, and gene structure of the septin-like putative proto-oncogene Sint1. Gene. 2002;285:79–89.

    Article  CAS  PubMed  Google Scholar 

  8. Montagna C, Lyu MS, Hunter K, Lukes L, Lowther W, Reppert T, et al. The Septin 9 (MSF) gene is amplified and overexpressed in mouse mammary gland adenocarcinomas and human breast cancer cell lines. Cancer Res. 2003;63:2179–87.

    CAS  PubMed  Google Scholar 

  9. Montagna C, Bejerano-Sagie M, Zechmeister JR. Mammalian septins in health and disease. J Res Rep Biochem. 2015;5:59–72.

    Google Scholar 

  10. Angelis D, Spiliotis ET. Septin mutations in human cancers. Front Cell Dev Biol. 2016;4:122.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ciriello G, Gatza ML, Beck AH, Wilkerson MD, Rhie SK, Pastore A, et al. Comprehensive molecular portraits of invasive lobular breast cancer. Cell. 2015;163:506–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gonzalez ME, Peterson EA, Privette LM, Loffreda-Wren JL, Kalikin LM, Petty EM. High SEPT9_v1 expression in human breast cancer cells is associated with oncogenic phenotypes. Cancer Res. 2007;67:8554–64.

    Article  CAS  PubMed  Google Scholar 

  13. Verdier-Pinard P, Salaun D, Bouguenina H, Shimada S, Pophillat M, Audebert S, et al. Septin 9_i2 is downregulated in tumors, impairs cancer cell migration and alters subnuclear actin filaments. Sci Rep. 2017;7:44976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Connolly D, Yang Z, Castaldi M, Simmons N, Oktay MH, Coniglio S, et al. Septin 9 isoform expression, localization and epigenetic changes during human and mouse breast cancer progression. Breast Cancer Res. 2011;13:R76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Amir S, Golan M, Mabjeesh NJ. Targeted knockdown of SEPT9_v1 inhibits tumor growth and angiogenesis of human prostate cancer cells concomitant with disruption of hypoxia-inducible factor-1 pathway. Mol Cancer Res. 2010;8:643–52.

    Article  CAS  PubMed  Google Scholar 

  16. Chacko AD, McDade SS, Chanduloy S, Church SW, Kennedy R, Price J, et al. Expression of the SEPT9_i4 isoform confers resistance to microtubule-interacting drugs. Cell Oncol. 2012;35:85–93.

    Article  CAS  Google Scholar 

  17. Gonzalez ME, Makarova O, Peterson EA, Privette LM, Petty EM. Up-regulation of SEPT9_v1 stabilizes c-Jun-N-terminal kinase and contributes to its pro-proliferative activity in mammary epithelial cells. Cell Signal. 2009;21:477–87.

    Article  CAS  PubMed  Google Scholar 

  18. Chacko AD, Hyland PL, McDade SS, Hamilton PW, Russell SH, Hall PA. SEPT9_v4 expression induces morphological change, increased motility and disturbed polarity. J Pathol. 2005;206:458–65.

    Article  CAS  PubMed  Google Scholar 

  19. Dolat L, Hunyara JL, Bowen JR, Karasmanis EP, Elgawly M, Galkin VE, et al. Septins promote stress fiber-mediated maturation of focal adhesions and renal epithelial motility. J Cell Biol. 2014;207:225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. TCGA. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70. https://doi.org/10.1038/nature11412.

  21. Golan M, Mabjeesh NJ. SEPT9_i1 is required for the association between HIF-1alpha and importin-alpha to promote efficient nuclear translocation. Cell Cycle. 2013;12:2297–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vardi-Oknin D, Golan M, Mabjeesh NJ. Forchlorfenuron disrupts SEPT9_i1 filaments and inhibits HIF-1. PloS One. 2013;8:e73179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Amir S, Wang R, Simons JW, Mabjeesh NJ. SEPT9_v1 up-regulates hypoxia-inducible factor 1 by preventing its RACK1-mediated degradation. J Biol Chem. 2009;284:11142–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hall PA, Jung K, Hillan KJ, Russell SE. Expression profiling the human septin gene family. J Pathol. 2005;206:269–78.

    Article  CAS  PubMed  Google Scholar 

  25. Wolfgang CD, Essand M, Vincent JJ, Lee B, Pastan I. TARP: a nuclear protein expressed in prostate and breast cancer cells derived from an alternate reading frame of the T cell receptor gamma chain locus. Proc Natl Acad Sci USA. 2000;97:9437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maeda K, Nakanishi N, Rogers BL, Haser WG, Shitara K, Yoshida H, et al. Expression of the T-cell receptor gamma-chain gene products on the surface of peripheral T cells and T-cell blasts generated by allogeneic mixed lymphocyte reaction. Proc Natl Acad Sci USA. 1987;84:6536–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wolfgang CD, Essand M, Lee B, Pastan I. T-cell receptor gamma chain alternate reading frame protein (TARP) expression in prostate cancer cells leads to an increased growth rate and induction of caveolins and amphiregulin. Cancer Res. 2001;61:8122–6.

    CAS  PubMed  Google Scholar 

  28. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT. Uroplakins in urothelial biology, function, and disease. Kidney Int. 2009;75:1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee G. Uroplakins in the lower urinary tract. Int Neurourol J. 2011;15:4–12.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nile AH, Tripathi A, Yuan P, Mousley CJ, Suresh S, Wallace IM, et al. PITPs as targets for selectively interfering with phosphoinositide signaling in cells. Nat Chem Biol. 2014;10:76–84.

    Article  CAS  PubMed  Google Scholar 

  31. Nagano T, Takehara S, Takahashi M, Aizawa S, Yamamoto A. Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos. Development. 2006;133:4643–54.

    Article  CAS  PubMed  Google Scholar 

  32. Tai KY, Shieh YS, Lee CS, Shiah SG, Wu CW. Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene. 2008;27:4044–55.

    Article  CAS  PubMed  Google Scholar 

  33. Byers JR. Metamorphosis of the perirectal malpighian tubules in the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). II. Ultrastructure and role of autophagic vacuoles. Can J Zool. 1971;49:1185–91.

    Article  CAS  PubMed  Google Scholar 

  34. Weidmann MD, Surve CR, Eddy RJ, Chen X, Gertler FB, Sharma VP, et al. Mena(INV) dysregulates cortactin phosphorylation to promote invadopodium maturation. Sci Rep. 2016;6:36142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou ZN, Sharma VP, Beaty BT, Roh-Johnson M, Peterson EA, Van Rooijen N, et al. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo. Oncogene. 2014;33:3784–93.

    Article  CAS  PubMed  Google Scholar 

  36. Jacob A, Jing J, Lee J, Schedin P, Gilbert SM, Peden AA, et al. Rab40b regulates trafficking of MMP2 and MMP9 during invadopodia formation and invasion of breast cancer cells. J Cell Sci. 2013;126:4647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clark ES, Weaver AM. A new role for cortactin in invadopodia: regulation of protease secretion. Eur J Cell Biol. 2008;87:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Monsky WL, Kelly T, Lin CY, Yeh Y, Stetler-Stevenson WG, Mueller SC, et al. Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 1993;53:3159–64.

    CAS  PubMed  Google Scholar 

  39. Nakahara H, Howard L, Thompson EW, Sato H, Seiki M, Yeh Y, et al. Transmembrane/cytoplasmic domain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion. Proc Natl Acad Sci USA. 1997;94:7959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bourguignon LY, Gunja-Smith Z, Iida N, Zhu HB, Young LJ, Muller WJ, et al. CD44v(3,8-10) is involved in cytoskeleton-mediated tumor cell migration and matrix metalloproteinase (MMP-9) association in metastatic breast cancer cells. J Cell Physiol. 1998;176:206–15.

    Article  CAS  PubMed  Google Scholar 

  41. Artym VV, Zhang Y, Seillier-Moiseiwitsch F, Yamada KM, Mueller SC. Dynamic interactions of cortactin and membrane type 1 matrix metalloproteinase at invadopodia: defining the stages of invadopodia formation and function. Cancer Res. 2006;66:3034–43.

    Article  CAS  PubMed  Google Scholar 

  42. Poincloux R, Lizarraga F, Chavrier P. Matrix invasion by tumour cells: a focus on MT1-MMP trafficking to invadopodia. J Cell Sci. 2009;122:3015–24.

    Article  CAS  PubMed  Google Scholar 

  43. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164:1226–32.

    Article  CAS  PubMed  Google Scholar 

  45. Shimoda M, Khokha R. Metalloproteinases in extracellular vesicles. Biochim et Biophys acta. 2017;1864:1989–2000.

    Article  CAS  Google Scholar 

  46. Filipe V, Hawe A, Jiskoot W. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27:796–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mehdiani A, Maier A, Pinto A, Barth M, Akhyari P, Lichtenberg A. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015: 50974.

  48. Helwa I, Cai J, Drewry MD, Zimmerman A, Dinkins MB, Khaled ML, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PloS ONE. 2017;12:e0170628.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82:1024–32.

    Article  CAS  PubMed  Google Scholar 

  50. Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int. 2002;52:255–64.

    Article  CAS  PubMed  Google Scholar 

  51. Stehbens SJ, Paszek M, Pemble H, Ettinger A, Gierke S, Wittmann T. CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat Cell Biol. 2014;16:561–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schmidt K, Nichols BJ. Functional interdependence between septin and actin cytoskeleton. BMC Cell Biol. 2004;5:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nagata K, Kawajiri A, Matsui S, Takagishi M, Shiromizu T, Saitoh N, et al. Filament formation of MSF-A, a mammalian septin, in human mammary epithelial cells depends on interactions with microtubules. J Biol Chem. 2003;278:18538–43.

    Article  CAS  PubMed  Google Scholar 

  54. Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, et al. Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol. 2012;22:1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sellin ME, Stenmark S, Gullberg M. Mammalian SEPT9 isoforms direct microtubule-dependent arrangements of septin core heteromers. Mol Biol Cell. 2012;23:4242–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Spiliotis ET, Hunt SJ, Hu Q, Kinoshita M, Nelson WJ. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules. J Cell Biol. 2008;180:295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bai X, Karasmanis EP, Spiliotis ET. Septin 9 interacts with kinesin KIF17 and interferes with the mechanism of NMDA receptor cargo binding and transport. Mol Biol Cell. 2016;27:897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sudo K, Ito H, Iwamoto I, Morishita R, Asano T, Nagata K. SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum Mutat. 2007;28:1005–13.

    Article  CAS  PubMed  Google Scholar 

  59. Tokhtaeva E, Capri J, Marcus EA, Whitelegge JP, Khuzakhmetova V, Bukharaeva E, et al. Septin dynamics are essential for exocytosis. J Biol Chem. 2015;290:5280–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Scott M, Hyland PL, McGregor G, Hillan KJ, Russell SE, Hall PA. Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene. 2005;24:4688–700.

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Wang H, Li J, Entenberg D, Xue A, Wang W, et al. Direct visualization of the phenotype of hypoxic tumor cells at single cell resolution in vivo using a new hypoxia probe. Intravital. 2016;5:pii: e1187803.

    Article  Google Scholar 

  62. Hecht M, Rosler R, Wiese S, Johnsson N, Gronemeyer T. An interaction network of the human SEPT9 established by quantitative mass spectrometry. G3 (Bethesda). 2019;9:1869–80.

    Google Scholar 

  63. Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS. Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol. 1999;9:1458–67.

    Article  CAS  PubMed  Google Scholar 

  64. Barral Y, Kinoshita M. Structural insights shed light onto septin assemblies and function. Curr Opin Cell Biol. 2008;20:12–18.

    Article  CAS  PubMed  Google Scholar 

  65. Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S, Snapp EL, et al. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. Elife. 2014;3:e01883.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Spiliotis ET, Nelson WJ. Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci. 2006;119:4–10.

    Article  CAS  PubMed  Google Scholar 

  67. Akil A, Peng J, Omrane M, Gondeau C, Desterke C, Marin M, et al. Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV. Nat Commun. 2016;7:12203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sharma VP, Eddy R, Entenberg D, Kai M, Gertler FB, Condeelis J. Tks5 and SHIP2 regulate invadopodium maturation, but not initiation, in breast carcinoma cells. Curr Biol. 2013;23:2079–89.

    Article  CAS  PubMed  Google Scholar 

  69. Eddy RJ, Weidmann MD, Sharma VP, Condeelis JS. Tumor cell invadopodia: invasive protrusions that orchestrate metastasis. Trends Cell Biol. 2017;27:595–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Valenzuela-Iglesias A, Sharma VP, Beaty BT, Ding Z, Gutierrez-Millan LE, Roy P, et al. Profilin1 regulates invadopodium maturation in human breast cancer cells. Eur J Cell Biol. 2015;94:78–89.

    Article  CAS  PubMed  Google Scholar 

  71. Beaty BT, Sharma VP, Bravo-Cordero JJ, Simpson MA, Eddy RJ, Koleske AJ, et al. beta1 integrin regulates Arg to promote invadopodial maturation and matrix degradation. Mol Biol Cell. 2013;24:1661–75. S1661–1611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang Y, McNiven MA. Invasive matrix degradation at focal adhesions occurs via protease recruitment by a FAK-p130Cas complex. J Cell Biol. 2012;196:375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noordstra I, Akhmanova A. Linking cortical microtubule attachment and exocytosis. F1000Res. 2017;6:469.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Smith C, Dolat L, Angelis D, Forgacs E, Spiliotis ET, Galkin VE. Septin 9 Exhibits polymorphic binding to F-Actin and inhibits myosin and cofilin activity. J Mol Biol. 2015;427:3273–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bai X, Bowen JR, Knox TK, Zhou K, Pendziwiat M, Kuhlenbaumer G, et al. Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. J cell Biol. 2013;203:895–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nistico P, Bissell MJ, Radisky DC. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb Perspect Biol. 2012;4:pii: a011908.

    Article  CAS  Google Scholar 

  77. Chen QK, Lee K, Radisky DC, Nelson CM. Extracellular matrix proteins regulate epithelial-mesenchymal transition in mammary epithelial cells. Differentiation. 2013;86:126–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. McGowan PM, Duffy MJ. Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann Oncol. 2008;19:1566–72.

    Article  CAS  PubMed  Google Scholar 

  80. Cichon MA, Nelson CM, Radisky DC. Regulation of epithelial-mesenchymal transition in breast cancer cells by cell contact and adhesion. Cancer Inf. 2015;14:1–13.

    CAS  Google Scholar 

  81. Flores-Pliego A, Espejel-Nunez A, Castillo-Castrejon M, Meraz-Cruz N, Beltran-Montoya J, Zaga-Clavellina V, et al. Matrix metalloproteinase-3 (MMP-3) is an endogenous activator of the MMP-9 secreted by placental leukocytes: implication in human labor. PloS ONE. 2015;10:e0145366.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999;274:13066–76.

    Article  CAS  PubMed  Google Scholar 

  83. Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128:3117–31.

    CAS  PubMed  Google Scholar 

  84. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162:1123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fata JE, Werb Z, Bissell MJ. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res. 2004;6:1–11.

    Article  CAS  PubMed  Google Scholar 

  86. Khokha R, Werb Z. Mammary gland reprogramming: metalloproteinases couple form with function. Cold Spring Harb Perspect Biol. 2011;3:pii: a004333.

    Article  CAS  Google Scholar 

  87. Dickson SR, Warburton MJ. Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. J Histochem Cytochem. 1992;40:697–703.

    Article  CAS  PubMed  Google Scholar 

  88. Knauper V, Bailey L, Worley JR, Soloway P, Patterson ML, Murphy G. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Lett. 2002;532:127–30.

    Article  CAS  PubMed  Google Scholar 

  89. Cazorla M, Hernandez L, Nadal A, Balbin M, Lopez JM, Vizoso F, et al. Collagenase-3 expression is associated with advanced local invasion in human squamous cell carcinomas of the larynx. J Pathol. 1998;186:144–50.

    Article  CAS  PubMed  Google Scholar 

  90. Kotepui M, Punsawad C, Chupeerach C, Songsri A, Charoenkijkajorn L, Petmitr S. Differential expression of matrix metalloproteinase-13 in association with invasion of breast cancer. Conte Oncol (Pozn). 2016;20:225–8.

    CAS  Google Scholar 

  91. Neubauer K, Zieger B. The mammalian septin interactome. Front Cell Dev Biol. 2017;5:3.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Heasley LR, Garcia G 3rd, McMurray MA. Off-target effects of the septin drug forchlorfenuron on nonplant eukaryotes. Eukaryot Cell. 2014;13:1411–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: turning past failures into future successes. Mol Cancer Ther. 2018;17:1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Winer A, Janosky M, Harrison B, Zhong J, Moussai D, Siyah P, et al. Inhibition of breast cancer metastasis by presurgical treatment with an oral matrix metalloproteinase inhibitor: a preclinical proof-of-principle study. Mol Cancer Ther. 2016;15:2370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, et al. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J cell Biol. 2011;195:903–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hoshino D, Jourquin J, Emmons SW, Miller T, Goldgof M, Costello K, et al. Network analysis of the focal adhesion to invadopodia transition identifies a PI3K-PKCalpha invasive signaling axis. Sci Signal. 2012;5:ra66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Chan KT, Cortesio CL, Huttenlocher A. FAK alters invadopodia and focal adhesion composition and dynamics to regulate breast cancer invasion. J Cell Biol. 2009;185:357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Genna A, Lapetina S, Lukic N, Twafra S, Meirson T, Sharma VP, et al. Pyk2 and FAK differentially regulate invadopodia formation and function in breast cancer cells. J Cell Biol. 2018;217:375–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Team RC R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2016.

  101. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–5.

    Article  CAS  PubMed  Google Scholar 

  102. Walter W, Sanchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31:2912–4.

    Article  CAS  PubMed  Google Scholar 

  103. Zhao X, Valen E, Parker BJ, Sandelin A. Systematic clustering of transcription start site landscapes. PloS ONE. 2011;6:e23409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1:417–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The reactome pathway knowledgebase. Nucleic acids Res. 2016;44:D481–487.

    Article  CAS  PubMed  Google Scholar 

  106. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.

    CAS  PubMed  Google Scholar 

  107. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disco. 2012;2:401–4.

    Article  Google Scholar 

  108. Sharma VP, Entenberg D, Condeelis J. High-resolution live-cell imaging and time-lapse microscopy of invadopodium dynamics and tracking analysis. Methods Mol Biol. 2013;1046:343–57.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the following shared resources at the Albert Einstein College of Medicine: Molecular Cytogenetic Core, in particular Dr. Jidong Shan; and the Analytical Imaging Facility in particular Dr. Vera DesMarais. Research reported in this publication was supported by the Albert Einstein Cancer Center support grant of the National Institutes of Health under award number P30CA013330 as well as CA150344 to JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Montagna.

Ethics declarations

Conflict of interest statement

The authors have no conflict of interest to declare.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marcus, J., Bejerano-Sagie, M., Patterson, N. et al. Septin 9 isoforms promote tumorigenesis in mammary epithelial cells by increasing migration and ECM degradation through metalloproteinase secretion at focal adhesions. Oncogene 38, 5839–5859 (2019). https://doi.org/10.1038/s41388-019-0844-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0844-0

This article is cited by

Search

Quick links