Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells

A Correction to this article was published on 11 December 2023

This article has been updated

Abstract

Dopamine and cAMP-regulated phosphoprotein, Mr 32000 (DARPP-32), is frequently overexpressed in early stages of gastric cancers. We utilized in vitro assays, 3D gastric gland organoid cultures, mouse models, and human tissue samples to investigate the biological and molecular impact of DARPP-32 on activation of IGF1R and STAT3 signaling and gastric tumorigenesis. DARPP-32 enhanced phosphorylation of IGF1R (Y1135), a step that was critical for STAT3 phosphorylation at Y705, nuclear localization, and transcription activation. By using proximity ligation and co-immunoprecipitation assays, we found that IGF1R and DARPP-32 co-existed in the same protein complex. Binding of DARPP-32 to IGF1R promoted IGF1R phosphorylation with subsequent activation of downstream SRC and STAT3. Analysis of gastric tissues from the TFF1 knockout (KO) mouse model of gastric neoplasia, demonstrated phosphorylation of STAT3 in the early stages of gastric tumorigenesis. By crossing the TFF1 KO mice with DARPP-32 (DP) knockout (KO) mice, that have normal stomach, we obtained double knockout (TFF1 KO/DP KO). The gastric mucosa from the double KO mice did not show phosphorylation of IGF1R or STAT3. In addition, the TFF1 KO/DP KO mice had a significant delay in developing neoplastic gastric lesions. Analysis of human gastric cancer tissue microarrays, showed high levels of DARPP-32 and positive immunostaining for nuclear STAT3 in cancer tissues, as compared to non-cancer histologically normal tissues. In summary, the DARPP-32–IGF1R signaling axis plays a key role in regulating the STAT3 signaling, a critical step in gastric tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA. Cancer J Clin. 2015;65:87–108.

    Article  Google Scholar 

  2. El-Rifai W, Smith MF Jr., Li G, Beckler A, Carl VS, Montgomery E, et al. Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. Cancer Res. 2002;62:4061–4.

    CAS  PubMed  Google Scholar 

  3. Mukherjee K, Peng D, Brifkani Z, Belkhiri A, Pera M, Koyama T, et al. Dopamine and cAMP regulated phosphoprotein MW 32 kDa is overexpressed in early stages of gastric tumorigenesis. Surgery. 2010;148:354–63.

    Article  Google Scholar 

  4. Beckler A, Moskaluk CA, Zaika A, Hampton GM, Powell SM, Frierson HF, et al. Overexpression of the 32-kilodalton dopamine and cyclic adenosine 3′,5′-monophosphate-regulated phosphoprotein in common adenocarcino mas. Cancer. 2003;98:1547–51.

    Article  CAS  Google Scholar 

  5. Belkhiri A, Zaika A, Pidkovka N, Knuutila S, Moskaluk C, El-Rifai W. Darpp-32: a novel antiapoptotic gene in upper gastrointestinal carcinomas. Cancer Res. 2005;65:6583–92.

    Article  CAS  Google Scholar 

  6. Chen Z, Zhu S, Hong J, Soutto M, Peng D, Belkhiri A, et al. Gastric tumour-derived ANGPT2 regulation by DARPP-32 promotes angiogenesis. Gut. 2016;65:925–34.

    Article  CAS  Google Scholar 

  7. Vangamudi B, Peng DF, Cai Q, El-Rifai W, Zheng W, Belkhiri A. t-DARPP regulates phosphatidylinositol-3-kinase-dependent cell growth in breast cancer. Mol Cancer. 2010;9:240.

    Article  Google Scholar 

  8. Zhu S, Belkhiri A, El-Rifai W. DARPP-32 Increases Interactions Between Epidermal Growth Factor Receptor and ERBB3 to Promote Tumor Resistance to Gefitinib. Gastroenterology. 2011;141:1738–48 e1732.

    Article  CAS  Google Scholar 

  9. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–99.

    Article  CAS  Google Scholar 

  10. Yoshimura A, Nishinakamura H, Matsumura Y, Hanada T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther. 2005;7:100–10.

    Article  CAS  Google Scholar 

  11. Yoshimura A, Mori H, Ohishi M, Aki D, Hanada T. Negative regulation of cytokine signaling influences inflammation. Curr Opin Immunol. 2003;15:704–8.

    Article  CAS  Google Scholar 

  12. O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36:542–50.

    Article  Google Scholar 

  13. Ahn JH, Choi YS, Choi JH. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. Mol Hum Reprod. 2015;21:792–802.

    Article  CAS  Google Scholar 

  14. Yang C, He L, He P, Liu Y, Wang W, He Y, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med Oncol. 2015;32:352.

    PubMed  Google Scholar 

  15. Li CJ, Li YC, Zhang DR, Pan JH. Signal transducers and activators of transcription 3 function in lung cancer. J Cancer Res Ther. 2013;9(Suppl 2):S67–73.

    Article  Google Scholar 

  16. Darnell JE Jr. STATs and gene regulation. Science. 1997;277:1630–5.

    Article  CAS  Google Scholar 

  17. Li S, Lei X, Zhang J, Yang H, Liu J, Xu C. Insulin-like growth factor 1 promotes growth of gastric cancer by inhibiting foxo1 nuclear retention. Tumour Biol. 2015;36:4519–23.

    Article  CAS  Google Scholar 

  18. Chen Z, Soutto M, Rahman B, Fazili MW, Peng D, Blanca Piazuelo M, et al. Integrated expression analysis identifies transcription networks in mouse and human gastric neoplasia. Genes Chromosomes Cancer. 2017;56:535–47.

    Article  CAS  Google Scholar 

  19. Ma Y, Tang N, Thompson RC, Mobley BC, Clark SW, Sarkaria JN, et al. InsR/IGF1R Pathway Mediates Resistance to EGFR Inhibitors in Glioblastoma. Clin Cancer Res. 2016;22:1767–76.

    Article  CAS  Google Scholar 

  20. Werner H. Tumor suppressors govern insulin-like growth factor signaling pathways: implications in metabolism and cancer. Oncogene. 2012;31:2703–14.

    Article  CAS  Google Scholar 

  21. Gryko M, Kisluk J, Cepowicz D, Zinczuk J, Kamocki Z, Guzinska-Ustymowicz K, et al. Expression of insulin-like growth factor receptor type 1 correlate with lymphatic metastases in human gastric cancer. Pol J Pathol. 2014;65:135–40.

    Article  CAS  Google Scholar 

  22. Adachi Y, Li R, Yamamoto H, Min Y, Piao W, Wang Y, et al. Insulin-like growth factor-I receptor blockade reduces the invasiveness of gastrointestinal cancers via blocking production of matrilysin. Carcinogenesis. 2009;30:1305–13.

    Article  CAS  Google Scholar 

  23. Ge J, Chen Z, Huang J, Yuan W, Den Z. Silencing insulin-like growth factor-1 receptor expression inhibits gastric cancer cell proliferation and invasion. Mol Med Rep. 2015;11:633–8.

    Article  CAS  Google Scholar 

  24. Soutto M, Belkhiri A, Piazuelo MB, Schneider BG, Peng D, Jiang A, et al. Loss of TFF1 is associated with activation of NF-kappaB-mediated inflammation and gastric neoplasia in mice and humans. J Clin Invest. 2011;121:1753–67.

    Article  CAS  Google Scholar 

  25. Szasz AM, Lanczky A, Nagy A, Forster S, Hark K, Green JE, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1065 patients. Oncotarget. 2016;7:49322–33.

    Article  Google Scholar 

  26. Wang MS, Pan Y, Liu N, Guo C, Hong L, Fan D. Overexpression of DARPP-32 in colorectal adenocarcinoma. Int J Clin Pr. 2005;59:58–61.

    Article  CAS  Google Scholar 

  27. Adachi Y, Ohashi H, Imsumran A, Yamamoto H, Matsunaga Y, Taniguchi H, et al. The effect of IGF-I receptor blockade for human esophageal squamous cell carcinoma and adenocarcinoma. Tumour Biol. 2014;35:973–85.

    Article  CAS  Google Scholar 

  28. Numata K, Oshima T, Sakamaki K, Yoshihara K, Aoyama T, Hayashi T, et al. Clinical significance of IGF1R gene expression in patients with Stage II/III gastric cancer who receive curative surgery and adjuvant chemotherapy with S-1. J Cancer Res Clin Oncol. 2016;142:415–22.

    Article  CAS  Google Scholar 

  29. Mitchell TJ, John S. Signal transducer and activator of transcription (STAT) signalling and T-cell lymphomas. Immunology. 2005;114:301–12.

    Article  CAS  Google Scholar 

  30. Cafferkey C, Chau I. Novel STAT 3 inhibitors for treating gastric cancer. Expert Opin Invest Drugs. 2016;25:1023–31.

    Article  CAS  Google Scholar 

  31. Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011;121:3375–83.

    Article  CAS  Google Scholar 

  32. Menting JG, Lawrence CF, Kong GK, Margetts MB, Ward CW, Lawrence MC. Structural congruency of ligand binding to the insulin and insulin/type 1 insulin-like growth factor hybrid receptors. Structure. 2015;23:1271–82.

    Article  CAS  Google Scholar 

  33. Carboni JM, Lee AV, Hadsell DL, Rowley BR, Lee FY, Bol DK, et al. Tumor development by transgenic expression of a constitutively active insulin-like growth factor I receptor. Cancer Res. 2005;65:3781–7.

    Article  CAS  Google Scholar 

  34. Yadav A, Kalita A, Dhillon S, Banerjee K. JAK/STAT3 pathway is involved in survival of neurons in response to insulin-like growth factor and negatively regulated by suppressor of cytokine signaling-3. J Biol Chem. 2005;280:31830–40.

    Article  CAS  Google Scholar 

  35. Zhao G, Zhu G, Huang Y, Zheng W, Hua J, Yang S, et al. IL-6 mediates the signal pathway of JAK-STAT3-VEGF-C promoting growth, invasion and lymphangiogenesis in gastric cancer. Oncol Rep. 2016;35:1787–95.

    Article  CAS  Google Scholar 

  36. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21:159–68.

    Article  CAS  Google Scholar 

  37. Grivennikov SI, Karin M. Dangerous liaisons: STAT3 and NF-kappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev. 2010;21:11–19.

    Article  CAS  Google Scholar 

  38. Zhu S, Soutto M, Chen Z, Peng D, Romero-Gallo J, Krishna US, et al. Helicobacter pylori-induced cell death is counteracted by NF-kappaB-mediated transcription of DARPP-32. Gut. 2017;66:761–2.

    PubMed  Google Scholar 

  39. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  Google Scholar 

  40. Fienberg AA, Hiroi N, Mermelstein PG, Song W, Snyder GL, Nishi A, et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science. 1998;281:838–42.

    Article  CAS  Google Scholar 

  41. Lefebvre O, Chenard MP, Masson R, Linares J, Dierich A, LeMeur M, et al. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science. 1996;274:259–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the U.S. National Institutes of Health (R01CA93999), Research Career Scientist award (1IK6BX003787), and a merit award (I01BX001179) from the U.S. Department of Veterans affairs (W. El-Rifai). The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the Department of Veterans Affairs, National Institutes of Health, or the University of Miami.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wael El-Rifai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Soutto, M., Chen, Z. et al. Activation of IGF1R by DARPP-32 promotes STAT3 signaling in gastric cancer cells. Oncogene 38, 5805–5816 (2019). https://doi.org/10.1038/s41388-019-0843-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-019-0843-1

This article is cited by

Search

Quick links