Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis

Abstract

The immune microenvironment of pancreatic ductal adenocarcinoma (PDA) is comprised of a heterogeneous population of cells that are critical for disease evolution. Prominent among these are the specialized CD1dhiCD5+ regulatory B (Breg) cells that exert a pro-tumorigenic role by promoting tumor cell proliferation. Dissecting the molecular pathways regulating this immune sub-population can thus be valuable for uncovering potential therapeutic targets. Here, we investigate Bruton’s tyrosine kinase (BTK), a key B-cell kinase, as a potential regulator of CD1dhiCD5+ Breg differentiation in the pancreatic tumor microenvironment. Treatment of cytokine-induced B cells in vitro with the high specificity BTK inhibitor Tirabrutinib inhibited CD1dhiCD5+ Breg differentiation and production of IL-10 and IL-35, essential mediators of Breg immunosuppressive functions. The BTK signaling pathway was also found to be active in vivo in PanIN-associated regulatory B cells. Tirabrutinib treatment of mice bearing orthotopic KrasG12D-pancreatic lesions severely compromised stromal accumulation of the CD1dhiCD5+ Breg population. This was accompanied by an increase in stromal CD8+IFNγ+ cytotoxic T cells and significant attenuation of tumor cell proliferation and PanIN growth. Our results uncover a novel role for BTK in regulating CD1dhiCD5+ Breg differentiation and emphasize its potential as a therapeutic target for pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.

    Article  CAS  Google Scholar 

  2. Rahib L, Fleshman JM, Matrisian LM, Berlin JD. 2016. Evaluation of pancreatic cancer clinical trials and benchmarks for clinically meaningful future trials: a systematic review. JAMA Oncol. 2016;2:1209–16.

    Article  Google Scholar 

  3. Rishi A, Goggins M, Wood LD, Hruban RH. Pathological and molecular evaluation of pancreatic neoplasms. Semin Oncol. 2015;42:28–39.

    Article  CAS  Google Scholar 

  4. Stromnes IM, DelGiorno KE, Greenberg PD, Hingorani SR. Stromal reengineering to treat pancreas cancer. Carcinogenesis. 2014;35:1451–60.

    Article  CAS  Google Scholar 

  5. Vonderheide RH, Bayne LJ. Inflammatory networks and immune surveillance of pancreatic carcinoma. Curr Opin Immunol. 2013;25:200–5.

    Article  CAS  Google Scholar 

  6. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    Article  CAS  Google Scholar 

  7. Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell. 2012;21:836–47.

    Article  CAS  Google Scholar 

  8. Kurahara H, Shinchi H, Mataki Y, Maemura K, Noma H, Kubo F, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer. J Surg Res. 2011;167:e211–9.

    Article  Google Scholar 

  9. Mielgo A, Schmid MC. Impact of tumour associated macrophages in pancreatic cancer. BMB Rep. 2013;46:131–8.

    Article  CAS  Google Scholar 

  10. McAllister F, Bailey JM, Alsina J, Nirschl CJ, Sharma R, Fan H, et al. Oncogenic Kras activates a hematopoietic-to-epithelial IL-17 signaling axis in preinvasive pancreatic neoplasia. Cancer Cell. 2014;25:621–37.

    Article  CAS  Google Scholar 

  11. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med. 2011;208:469–78.

    Article  Google Scholar 

  12. Zhang Y, Yan W, Mathew E, Bednar F, Wan S, Collins MA, et al. CD4+T lymphocyte ablation prevents pancreatic carcinogenesis in mice. Cancer Immunol Res. 2014;2:423–35.

    Article  CAS  Google Scholar 

  13. Zdanov S, Mandapathil M, Abu Eid R, Adamson-Fadeyi S, Wilson W, Qian J, et al. Mutant KRAS conversion of conventional T cells into regulatory T cells. Cancer Immunol Res. 2016;4:354–65.

    Article  CAS  Google Scholar 

  14. Granville CA, Memmott RM, Balogh A, Mariotti J, Kawabata S, Han W, et al. A central role for Foxp3+regulatory T cells in K-Ras-driven lung tumorigenesis. PLoS One. 2009;4:e5061.

    Article  Google Scholar 

  15. Gunderson AJ, Kaneda MM, Tsujikawa T, Nguyen AV, Affara NI, Ruffell B, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 2016;6:270–85.

    Article  CAS  Google Scholar 

  16. Pylayeva-Gupta Y, Das S, Handler JS, Hajdu CH, Coffre M, Koralov SB, et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 2016;6:247–55.

    Article  CAS  Google Scholar 

  17. Lee KE, Spata M, Bayne LJ, Buza EL, Durham AC, Allman D, et al. Hif1a deletion reveals pro-neoplastic function of B cells in pancreatic neoplasia. Cancer Discov. 2016;6:256–69.

    Article  CAS  Google Scholar 

  18. Ponader S, Burger JA. Bruton’s tyrosine kinase: from X-linked gammaglobulinemia toward targeted therapy for B-cell malignancies. J Clin Oncol. 2014;32:1830–9.

    Article  CAS  Google Scholar 

  19. Mohamed AJ, Yu L, Backesjo CM, Vargas L, Faryal R, Aints A, et al. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228:58–73.

    Article  CAS  Google Scholar 

  20. Petro JB, Khan WN. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J Biol Chem. 2001;276:1715–19.

    Article  CAS  Google Scholar 

  21. Burger JA, Wiestner AN. Targeting B cell receptor signaling in cancer: preclinical and clinical advances. Nat Rev Cancer. 2018;18:148–67.

    Article  CAS  Google Scholar 

  22. Isaza-Correa JM, Liang Z, van den Berg A, Diepstra A, Visser L. Toll-like receptors in the pathogenesis of human B cell malignancies. J Hematol Oncol. 2014;7:57.

    Article  Google Scholar 

  23. Doyle SL, Jefferies CA, Feighery C, O’Neill LA. Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem. 2007;282:36953–60.

    Article  CAS  Google Scholar 

  24. Schmidt NW, Thieu VT, Mann BA, Ahyi AN, Kaplan MH. Bruton’s tyrosine kinase is required for TLR-induced IL-10 production. J Immunol. 2006;177:7203–10.

    Article  CAS  Google Scholar 

  25. Corneth OB, de Bruijn MJ, Rip J, Asmawidjaja PS, Kil LP, Hendriks RW. Enhanced expression of Bruton’s tyrosine kinase in B cells drives systemic autoimmunity by disrupting T cell homeostasis. J Immunol. 2016;197:58–67.

    Article  CAS  Google Scholar 

  26. Delitto D, Black BS, Sorenson HL, Knowlton AE, Thomas RM, Sarosi GA, et al. The inflammatory milieu within the pancreatic cancer microenvironment correlates with clinicopathologic parameters, chemoresistance and survival. BMC Cancer. 2015;15:783.

    Article  Google Scholar 

  27. Rosser EC, Oleinika K, Tonon S, Doyle R, Bosma A, Carter NA, et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat Med. 2014;20:1334–9.

    Article  CAS  Google Scholar 

  28. Brunner C, Avots A, Kreth HW, Serfling E, Schuster V. Bruton’s tyrosine kinase is activated upon CD40 stimulation in human B lymphocytes. Immunobiology. 2002;206:432–40.

    Article  CAS  Google Scholar 

  29. Matsuda T, Takahashi-Tezuka M, Fukada T, Okuyama Y, Fujitani Y, Tsukada S, et al. Association and activation of Btk and Tec tyrosine kinases bygp130, a signal transducer of the interleukin-6 family of cytokines. Blood. 1995;85:627–33.

    CAS  PubMed  Google Scholar 

  30. Jefferies CA, Doyle S, Brunner C, Dunne A, Brint E, Wietek C, et al. Bruton’s tyrosine kinase is a Toll/interleukin-1 receptor domain-binding protein that participates in nuclear factor kappaB activation by Toll-like receptor 4. J Biol Chem. 2003;278:26258–64.

    Article  CAS  Google Scholar 

  31. Hingorani SR, Petricoin EF, Maitra A, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell. 2003;4:437–50.

    Article  CAS  Google Scholar 

  32. Ochi A, Nguyen AH, Bedrosian AS, Mushlin HM, Zarbakhsh S, Barilla R, et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J Exp Med. 2012;209:1671–87.

    Article  CAS  Google Scholar 

  33. Unek T, Unek IT, Agalar AA, Sagol O, Ellidokuz H, Ertener O, et al. CD40 expression in pancreatic cancer. Hepatogastroenterology. 2013;60:2085–93.

    PubMed  Google Scholar 

  34. Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, et al. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 2014;4:452–65.

    Article  CAS  Google Scholar 

  35. DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183:38–57.

    Article  CAS  Google Scholar 

  36. Zhang J, Wolfgang CL, Zheng L. Precision immuno-oncology: prospects of iindividualized immunotherapy for pancreatic cancer. Cancers (Basel). 2018;10:pii:E39.

    Article  Google Scholar 

  37. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y, et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood. 2012;120:1877–87.

    Article  CAS  Google Scholar 

  38. Schwartz M, Zhang Y, Rosenblatt JD. B cell regulation of the anti-tumor response and role in carcinogenesis. J Immunother Cancer. 2016;4:40.

    Article  Google Scholar 

  39. Pylayeva-Gupta Y. Molecular pathways: interleukin-35 in autoimmunity and cancer. Clin Cancer Res. 2016;22:4973–8.

    Article  CAS  Google Scholar 

  40. Egwuagu CE, Yu CR. Interleukin 35-producing B cells (i35-Breg): A New mediator of regulatory B-cell functions in CNS autoimmune diseases. Crit Rev Immunol. 2015;35(1):49–57.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L.J. Taylor for help with article preparation and members of the Bar-Sagi lab for valuable discussions and comments. The authors also thank NYU Langone’s Cytometry and Cell Sorting Laboratory, which is supported in part by grant P30CA016087 from the National Institutes of Health/National Cancer Institute, for providing cell sorting/flow cytometry technologies. This work was supported in part by Gilead Sciences, Inc., Foster City, CA, USA, by NIH/NCI grant CA210263 (D.B.-S.) and by the Lustgarten Foundation Pancreatic Cancer Convergence Dream Team grant SU2C-AACR-DT14-14 (to D.B.-S.). Stand Up To Cancer is a program of the Entertainment Industry Foundation administered by the American Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dafna Bar-Sagi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Bar-Sagi, D. BTK signaling drives CD1dhiCD5+ regulatory B-cell differentiation to promote pancreatic carcinogenesis. Oncogene 38, 3316–3324 (2019). https://doi.org/10.1038/s41388-018-0668-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0668-3

This article is cited by

Search

Quick links