Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Macrophage-mediated transfer of cancer-derived components to stromal cells contributes to establishment of a pro-tumor microenvironment

Abstract

Tumor-derived extracellular vesicles (TEVs) secreted into the blood create a pre-metastatic niche in distant organs; however, it is unclear how TEVs are delivered and how they affect stromal cells in the tumor microenvironment. Tumor-associated macrophages (TAMs) have pivotal roles in cancer progression by interacting with cancer cells and other stromal cells. Here, we report a novel function of TAMs: delivery and transmission of TEV contents. TEV-incorporating macrophages (TEV-MΦs) showed increased invasiveness and were disseminated widely. Upon contact with host stromal cells (peritoneal mesothelial cells (PMCs), fibroblasts, and endothelial cells), TEV-MΦs released membrane blebs containing TEVs, a process dependent upon localized activation of caspase-3 in MΦs. Scattered blebs were incorporated into stromal cells, leading to transfer of cancer-derived RNA and proteins such as TGF-β, activated Src, Wnt3, and HIF1α. TEV-MΦ-secreted blebs containing cancer-derived components contributed to myofibroblastic changes in recipient stromal cells. TEVs delivered by MΦs penetrated deep into the parenchyma of the stomach in TEV-injected mice, and transmitted TEVs to PMCs lining the stomach surface; this process induced PMCs to undergo mesothelial–mesenchymal transition. PMCs infiltrated the gastric wall and created a niche, thereby promoting tumor invasion. Depletion of MΦs prevented these events. Moreover, TEV-MΦs created a pro-metastatic niche. Taken together, these results suggest a novel function for TAMs: transfer of cancer-derived components to surrounding stromal cells and induction of a pro-tumor microenvironment via an increase in the number of CAF-like cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antwi-Baffour SS. Molecular characterisation of plasma membrane-derived vesicles. J Biomed Sci. 2015;22:68. https://doi.org/10.1186/s12929-015-0174-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, Candia PD, et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci. 2016;17:175. https://doi.org/10.3390/ijms17020175.

  3. Qian Z, Shen Q, Yang X, Qiu Y, Zhang W. The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int. 2015;2015:649161. https://doi.org/10.1155/2015/649161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Syn N, Wang L, Sethi G, Thiery JP, Goh BC. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37:606–17.

    Article  CAS  Google Scholar 

  5. Steinbichler TB, Dudas J, Riechelmann H, Skvortsova II. The role of exosomes in cancer metastasis. Semin Cancer Biol. 2017;44:170–81.

    Article  CAS  Google Scholar 

  6. Maia J, Caja S, Moraes MCS, Couto N, Costa-Silva B. Exosome-based cell-cell communication in the tumor microenvironment. Frontiers Cell Dev Biol. 2018. https://doi.org/10.3389/fcell.2018.00018.

  7. Naito Y, Yoshioka Y, Yamamoto Y, Ochiya T. How cancer cells dictate their microenvironment: present roles of extracellular vesicles. Cell Mol Life Sci. 2017;74:697–713.

    Article  CAS  Google Scholar 

  8. Tanaka M, Kuriyama S, Itoh G, Maeda D, Goto A, Tamiya Y, et al. Mesothelial cells create a novel tissue niche that facilitates gastric cancer invasion. Cancer Res. 2017;77:684–95.

    Article  CAS  Google Scholar 

  9. Lv ZD, Wang HB, Dong Q, Kong B, Li JG, Yang ZC, et al. Mesothelial cels differentiate into fibroblast-like cells under the scirrhous gastric cancer microenvironment and promote peritoneal carcinomatosis in vitro and in vivo. Mol Cell Biochem. 2013;377:177–85.

    Article  CAS  Google Scholar 

  10. Sandoval P, Jiménez-Heffernan JA, Rynne-Vidal Á, Pérez-Lozano ML, GilsanzÁ, Ruiz-Carpio V, et al. Carcinoma-associated fibroblasts derive from mesothelial cells via mesothelial-to-mesenchymal transition in peritoneal metastasis. J Pathol. 2013;231:517–31.

    Article  CAS  Google Scholar 

  11. Rynne-Vidal A, Jimenez-Heffernan AJ, Fernandez-Chacon C, Lopez-Cabrera M, Sandoval P. The mesothelial origin of carcinoma associated-fibroblasts in peritoneal metastasis. Cancers. 2015;7:1994–2011.

    Article  CAS  Google Scholar 

  12. Zhou B, Ma Q, Rajagopal S, Wu SM, Domian I, Rivera-Feliciano J, et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature. 2008;454:109–13.

    Article  CAS  Google Scholar 

  13. Genard G, Lucas S, Michiels C. Reprogramming of tumor associated macrophages with anticancer therapies: radiotherapy versus chemo- and immunotherapies. Front Immunol. 2017;8:828.

    Article  Google Scholar 

  14. Shimoda M, Khokha R. Metalloproteinases in extracellular vesicles. Mol Cell Res. 2017;1864:1989–2000.

    CAS  Google Scholar 

  15. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    Article  CAS  Google Scholar 

  16. Takahashi H, Sakakura K, Kudo T, Toyoda M, Kaira K, Oyama T, et al. Cancer-associated fibroblasts promote an immunosuppressive microenvironment through the induction and accumulation of protumoral macrophages. Oncotarget. 2017;8:8633–47.

    Article  Google Scholar 

  17. Roh-Johnson M, Shah AN, Stonick JA, Wong MH, Condeelis J, Moens CB, et al. Macrophage-dependent cytoplasmic transfer during melanoma invasion in vivo. Dev Cell. 2017;43:549–62.

    Article  CAS  Google Scholar 

  18. Louphrasitthiphol P, Goding CR. Macrophage cytoplasmic transfer in melanoma invasion. Dev Cell. 2017;43:543–4.

    Article  CAS  Google Scholar 

  19. Liu CY, Xu JY, Shi XY, Huang W, Ruan TY, Xie P, et al. M2-polarized tumor-associated macrophages promoted epithelial–mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab Invest. 2013;93:844–54.

    Article  CAS  Google Scholar 

  20. Song W, Mazzieri R, Yang T, Gobe GC. Translational significance for tumor metastasis of tumor-associated macrophages and epithelial–mesenchymal transition. Front Immunol. 2017;8:1106.

    Article  Google Scholar 

  21. Che D, Zhang S, Jing Z, Shang L, Jin S, Liu F, et al. Macrophages induce EMT to promote invasion of lung cancer cells through the IL-6-mediated COX2/PGE2/β-catenin signalling pathway. Mol Immunol. 2017;90:197–210.

    Article  CAS  Google Scholar 

  22. Lin S, Sun L, Lyu X, Ai X, Du D, Su N, et al. Lactate-activated macrophages induced aerobic glycolysis and epithelial-mesenchymal transition in breast cancer by regulation of CCL5-CCR5 axis: a positive metabolic feedback loop. Oncotarget. 2017;8:110426–43.

    PubMed  PubMed Central  Google Scholar 

  23. Itoh G, Chida S, Yanagihara K, Yashiro M, Aiba N, Tanaka M. Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene. 2017;36:4434–444.

    Article  CAS  Google Scholar 

  24. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic. 2010;11:675–87.

    Article  CAS  Google Scholar 

  25. Fackler OT, Grosse R. Cell motility through plasma membrane blebbing. J Cell Biol. 2008;181:879–84.

    Article  CAS  Google Scholar 

  26. Rothschild PR, Salah S, BerdugoM, Gelize E, Delaunay K, Naud MC, et al. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: contribution to diabetic retinopathy. Sci Rep. 2017;7:8834. https://doi.org/10.1038/s41598-017-07329-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641.

    Article  Google Scholar 

  28. Nakase I, Kobayashi NB, Takatani-Nakase T, Yoshida T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci Rep. 2015. https://doi.org/10.1038/srep10300.

  29. Yuyama K, Sun H, Mitsutake S, Igarashi Y. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-β by microglia. J Biol Chem. 2012;287:10977–89.

    Article  CAS  Google Scholar 

  30. Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, et al. TGF-β/Smad3 signalling regulates the transition of bone marrow derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 2016;7:8809–22.

    PubMed  Google Scholar 

  31. Bao XL, Song H, Chen Z, Tang X. Wnt3a promotes epithelial-mesenchymal transition, migration, and proliferation of lens epithelial cells. Mol Vis. 2012;18:1983–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Q, Bai X, Ma T, Hu Q, Liang C, Xie S, et al. Wnt/β-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1α signaling. Carcinogenesis. 2013;34:962–73.

    Article  Google Scholar 

  33. Patel A, Sabbineni H, Clarke A, Somanath PR. Novel roles of Src in cancer cell epithelial-to-mesenchymal transition, vascular permeability, microinvasion and metastasis. Life Sci. 2016;157:52–61.

    Article  CAS  Google Scholar 

  34. Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Kingsberg RC, et al. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem. 2008;283:21065–73.

    Article  CAS  Google Scholar 

  35. Hashimoto O, Yoshida M, Koma Y, Yanai T, Hasegawa D, Kosaka Y, et al. Collaboration of cancer-associated fibroblasts and tumour-associated macrophages for neuroblastoma development. J Pathol. 2016;240:211–23.

    Article  CAS  Google Scholar 

  36. Barile L, Vassalli G. Exosomes therapy delivery tools and biomarkers of diseases. Pharmacol Ther. 2017;174:63–78.

    Article  CAS  Google Scholar 

  37. Huber MA, Azoitel N, Baumann B, Grunert S, Sommer A, Pehamberger H, et al. NF-κB is essential for epithelial- mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114:569–81.

    Article  CAS  Google Scholar 

  38. Yanagihara K, Tanaka H, Takigahira M, Ino Y, Yamaguchi Y, Toge T, et al. Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci. 2004;95:575–82.

    Article  CAS  Google Scholar 

  39. Satoyoshi R, Aiba N, Yanagihara K, Yashiro M, Tanaka M. Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis. Oncogene. 2015;34:3176–87.

    Article  CAS  Google Scholar 

  40. Chen R. Isolation and culture of mouse bone marrow-derived macrophages. Bio-Protoc. 2012;2:ISS3. http://www.bio-protocol.org/e68

    Google Scholar 

  41. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y, et al. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br J Cancer. 2011;105:996–1001.

    Article  CAS  Google Scholar 

  42. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20677.

Download references

Acknowledgements

We thank members of the Bioscience Education and Research Support Center (BERSC) in Akita University for technical assistance.

Funding

This work was supported by JSPS KAKENHI Grants (Nos. 17K19579 and 16H04691 to M. Tanaka), a Research Grant from the Princess Takamatsu Cancer Research Fund (14-24620 to M. Tanaka), the Takeda Science Foundation, and Project Mirai Cancer Research grants to M. Tanaka.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akiteru Goto or Masamitsu Tanaka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umakoshi, M., Takahashi, S., Itoh, G. et al. Macrophage-mediated transfer of cancer-derived components to stromal cells contributes to establishment of a pro-tumor microenvironment. Oncogene 38, 2162–2176 (2019). https://doi.org/10.1038/s41388-018-0564-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0564-x

This article is cited by

Search

Quick links