Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

cAMP-independent non-pigmentary actions of variant melanocortin 1 receptor: AKT-mediated activation of protective responses to oxidative DNA damage

Abstract

The melanocortin 1 receptor gene (MC1R), a well-established melanoma susceptibility gene, regulates the amount and type of melanin pigments formed within epidermal melanocytes. MC1R variants associated with increased melanoma risk promote the production of photosensitizing pheomelanins as opposed to photoprotective eumelanins. Wild-type (WT) MC1R activates DNA repair and antioxidant defenses in a cAMP-dependent fashion. Since melanoma-associated MC1R variants are hypomorphic in cAMP signaling, these non-pigmentary actions are thought to be defective in MC1R-variant human melanoma cells and epidermal melanocytes, consistent with a higher mutation load in MC1R-variant melanomas. We compared induction of antioxidant enzymes and DNA damage responses in melanocytic cells of defined MC1R genotype. Increased expression of catalase (CAT) and superoxide dismutase (SOD) genes following MC1R activation was cAMP-dependent and required a WT MC1R genotype. Conversely, pretreatment of melanocytic cells with an MC1R agonist before an oxidative challenge with Luperox decreased (i) accumulation of 8-oxo-7,8-dihydro-2′-deoxyguanine, a major product of oxidative DNA damage, (ii) phosphorylation of histone H2AX, a marker of DNA double-strand breaks, and (iii) formation of DNA breaks. These responses were comparable in cells WT for MC1R or harboring hypomorphic MC1R variants without detectable cAMP signaling. In MC1R-variant melanocytic cells, the DNA-protective responses were mediated by AKT. Conversely, in MC1R-WT melanocytic cells, high cAMP production downstream of MC1R blocked AKT activation and was responsible for inducing DNA repair. Accordingly, MC1R activation could promote repair of oxidative DNA damage by a cAMP-dependent pathway downstream of WT receptor, or via AKT in cells of variant MC1R genotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garcia-Borron JC, Abdel-Malek Z, Jimenez-Cervantes C. MC1R, the cAMP pathway, and the response to solar UV: extending the horizon beyond pigmentation. Pigment Cell Melanoma Res. 2014;27:699–720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Merlino G, Herlyn M, Fisher DE, Bastian BC, Flaherty KT, Davies MA, et al. The state of melanoma: challenges and opportunities. Pigment Cell Melanoma Res. 2016;29:404–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet. 2012;44:1006–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Napolitano A, Panzella L, Monfrecola G, d’Ischia M. Pheomelanin-induced oxidative stress: bright and dark chemistry bridging red hair phenotype and melanoma. Pigment Cell Melanoma Res. 2014;27:721–33.

    Article  PubMed  CAS  Google Scholar 

  6. Mitra D, Luo X, Morgan A, Wang J, Hoang MP, Lo J, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491:449–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Box NF, Wyeth JR, O’Gorman LE, Martin NG, Sturm RA. Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet. 1997;6:1891–7.

    Article  PubMed  CAS  Google Scholar 

  8. Smith R, Healy E, Siddiqui S, Flanagan N, Steijlen PM, Rosdahl I, et al. Melanocortin 1 receptor variants in an Irish population. J Invest Dermatol. 1998;111:119–22.

    Article  PubMed  CAS  Google Scholar 

  9. Valverde P, Healy E, Jackson I, Rees JL, Thody aJ. Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet. 1995;11:328–30.

    Article  PubMed  CAS  Google Scholar 

  10. Davies JR, Randerson-Moor J, Kukalizch K, Harland M, Kumar R, Madhusudan S, et al. Inherited variants in the MC1R gene and survival from cutaneous melanoma: a BioGenoMEL study. Pigment Cell Melanoma Res. 2012;25:384–94.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dessinioti C, Antoniou C, Katsambas A, Stratigos AJ. Melanocortin 1 receptor variants: functional role and pigmentary associations. Photochem Photobiol. 2011;87:978–87.

    Article  PubMed  CAS  Google Scholar 

  12. Scherer D, Kumar R. Genetics of pigmentation in skin cancer--a review. Mutat Res. 2010;705:141–53.

    Article  PubMed  CAS  Google Scholar 

  13. Frandberg PA, Doufexis M, Kapas S, Chhajlani V. Human pigmentation phenotype: a point mutation generates nonfunctional MSH receptor. Biochem Biophys Res Commun. 1998;245:490–2.

    Article  PubMed  CAS  Google Scholar 

  14. Herraiz C, Jimenez-Cervantes C, Zanna P, Garcia-Borron JC. Melanocortin 1 receptor mutations impact differentially on signalling to the cAMP and the ERK mitogen-activated protein kinase pathways. FEBS Lett. 2009;583:3269–74.

    Article  PubMed  CAS  Google Scholar 

  15. Nakayama K, Soemantri A, Jin F, Dashnyam B, Ohtsuka R, Duanchang P, et al. Identification of novel functional variants of the melanocortin 1 receptor gene originated from Asians. Hum Genet. 2006;119:322–30.

    Article  PubMed  CAS  Google Scholar 

  16. Newton RA, Smit SE, Barnes CC, Pedley J, Parsons PG, Sturm RA. Activation of the cAMP pathway by variant human MC1R alleles expressed in HEK and in melanoma cells. Peptides. 2005;26:1818–24.

    Article  PubMed  CAS  Google Scholar 

  17. Ringholm A, Klovins J, Rudzish R, Phillips S, Rees JL, Schiöth HB. Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J Invest Dermatol. 2004;123:917–23.

    Article  PubMed  CAS  Google Scholar 

  18. Roberts DW, Newton RA, Leonard JH, Sturm RA. Melanocytes expressing MC1R polymorphisms associated with red hair color have altered MSH-ligand activated pigmentary responses in coculture with keratinocytes. J Cell Physiol. 2008;215:344–55.

    Article  PubMed  CAS  Google Scholar 

  19. Schiöth HB, Phillips SR, Rudzish R, Birch-Machin Ma, Wikberg JE, Rees JL. Loss of function mutations of the human melanocortin 1 receptor are common and are associated with red hair. Biochem Biophys Res Commun. 1999;260:488–91.

    Article  PubMed  Google Scholar 

  20. Scott MC, Wakamatsu K, Ito S, Kadekaro AL, Kobayashi N, Groden J, et al. Human melanocortin 1 receptor variants, receptor function and melanocyte response to UV radiation. J Cell Sci. 2002;115:2349–55.

    PubMed  CAS  Google Scholar 

  21. Sanchez-Laorden BL, Sanchez-Mas J, Martinez-Alonso E, Martinez-Menarguez JA, Garcia-Borron JC, Jimenez-Cervantes C. Dimerization of the human melanocortin 1 receptor: functional consequences and dominant-negative effects. J Invest Dermatol. 2006;126:172–81.

    Article  PubMed  CAS  Google Scholar 

  22. Garcia-Borron JC, Olivares C. Melanocortin 1 receptor and skin pathophysiology: beyond colour, much more than meets the eye. Exp Dermatol. 2014;23:387–8.

    Article  PubMed  CAS  Google Scholar 

  23. Fajuyigbe D, Young AR. The impact of skin colour on human photobiological responses. Pigment Cell Melanoma Res. 2016;29:607–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Bastiaens MT, ter Huurne Ja, Kielich C, Gruis Na, Westendorp RG, Vermeer BJ, et al. Melanocortin-1 receptor gene variants determine the risk of nonmelanoma skin cancer independently of fair skin and red hair. Am J Hum Genet. 2001;68:884–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gerstenblith MR, Goldstein AM, Fargnoli MC, Peris K, Landi MT. Comprehensive evaluation of allele frequency differences of MC1R variants across populations. Hum Mutat. 2007;28:495–505.

    Article  PubMed  CAS  Google Scholar 

  26. Bohm M, Wolff I, Scholzen TE, Robinson SJ, Healy E, Luger TA, et al. alpha-Melanocyte-stimulating hormone protects from ultraviolet radiation-induced apoptosis and DNA damage. J Biol Chem. 2005;280:5795–802.

    Article  PubMed  CAS  Google Scholar 

  27. Kadekaro AL, Kavanagh R, Kanto H, Terzieva S, Hauser J, Kobayashi N, et al. alpha-Melanocortin and endothelin-1 activate antiapoptotic pathways and reduce DNA damage in human melanocytes. Cancer Res. 2005;65:4292–9.

    Article  PubMed  CAS  Google Scholar 

  28. Kadekaro AL, Leachman S, Kavanagh RJ, Swope V, Cassidy P, Supp D, et al. Melanocortin 1 receptor genotype: an important determinant of the damage response of melanocytes to ultraviolet radiation. FASEB J. 2010;24:3850–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kadekaro AL, Chen J, Yang J, Chen S, Jameson J, Swope VB, et al. Alpha-melanocyte-stimulating hormone suppresses oxidative stress through a p53-mediated signaling pathway in human melanocytes. Mol Cancer Res. 2012;10:778–86.

    Article  PubMed  CAS  Google Scholar 

  30. Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M. MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res. 2010;23:263–75.

    Article  PubMed  CAS  Google Scholar 

  31. Song X, Mosby N, Yang J, Xu A, Abdel-Malek Z, Kadekaro AL. alpha-MSH activates immediate defense responses to UV-induced oxidative stress in human melanocytes. Pigment Cell Melanoma Res. 2009;22:809–18.

    Article  PubMed  CAS  Google Scholar 

  32. Herraiz C, Garcia-Borron JC, Jiménez-Cervantes C, Olivares C. MC1R signaling. Intracellular partners and pathophysiological implications. Biochim Biophys Acta. 2017;1863:2448–61. https://doi.org/10.1016/j.bbadis.2017.02.027.

    Article  PubMed  CAS  Google Scholar 

  33. Herraiz C, Journe F, Abdel-Malek Z, Ghanem G, Jimenez-Cervantes C, Garcia-Borron JC. Signaling from the human melanocortin 1 receptor to ERK1 and ERK2 mitogen-activated protein kinases involves transactivation of cKIT. Mol Endocrinol. 2011;25:138–56.

    Article  PubMed  CAS  Google Scholar 

  34. Herraiz C, Journe F, Ghanem G, Jimenez-Cervantes C, Garcia-Borron JC. Functional status and relationships of melanocortin 1 receptor signaling to the cAMP and extracellular signal-regulated protein kinases 1 and 2 pathways in human melanoma cells. Int J Biochem Cell Biol. 2012;44:2244–52.

    Article  PubMed  CAS  Google Scholar 

  35. Cao J, Wan L, Hacker E, Dai X, Lenna S, Jimenez-Cervantes C, et al. MC1R is a potent regulator of PTEN after UV exposure in melanocytes. Mol Cell. 2013;51:409–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cohen-Armon M. PARP-1 activation in the ERK signaling pathway. Trends Pharmacol Sci. 2007;28:556–60.

    Article  PubMed  CAS  Google Scholar 

  37. Wei F, Yan J, Tang D. Extracellular signal-regulated kinases modulate DNA damage response - a contributing factor to using MEK inhibitors in cancer therapy. Curr Med Chem. 2011;18:5476–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hawkins AJ, Golding SE, Khalil A, Valerie K. DNA double-strand break - induced pro-survival signaling. Radiother Oncol. 2011;101:13–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liu Q, Turner KM, Alfred Yung WK, Chen K, Zhang W. Role of AKT signaling in DNA repair and clinical response to cancer therapy. Neuro Oncol. 2014;16:1313–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Toulany M, Rodemann HP. Phosphatidylinositol 3-kinase/Akt signaling as a key mediator of tumor cell responsiveness to radiation. Semin Cancer Biol. 2015;35:180–90.

    Article  PubMed  CAS  Google Scholar 

  41. Singh P, Dar MS, Dar MJ. p110α and p110β isoforms of PI3K signaling: are they two sides of the same coin? FEBS Lett. 2016;590:3071–82.

    Article  PubMed  CAS  Google Scholar 

  42. Cadet J, Douki T, Ravanat J-L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem Photobiol. 2015;91:140–55.

    Article  PubMed  CAS  Google Scholar 

  43. Monaghan RM, Barnes RG, Fisher K, Andreou T, Rooney N, Poulin GB, et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat Cell Biol. 2015;17:782–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Luo Z, Chen Y, Chen S, Welch W, Andresen B, Jose P, et al. Comparison of inhibitors of superoxide generation in vascular smooth muscle cells. Br J Pharmacol. 2009;157:935–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Altieri F, Grillo C, Maceroni M, Chichiarelli S. DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal. 2008;10:891–938.

    Article  PubMed  CAS  Google Scholar 

  46. Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, et al. gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle. 2010;9:662–9.

    Article  PubMed  Google Scholar 

  47. Podhorecka M, Skladanowski A, Bozko P. H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids. 2010;2010:1–9.

    Article  Google Scholar 

  48. Rodríguez-Escudero I, Oliver MD, Andrés-Pons A, Molina M, Cid VJ, Pulido R. A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. Hum Mol Genet. 2011;20:4132–42.

    Article  PubMed  CAS  Google Scholar 

  49. Beaumont KA, Shekar SL, Newton RA, James MR, Stow JL, Duffy DL, et al. Receptor function, dominant negative activity and phenotype correlations for MC1R variant alleles. Hum Mol Genet. 2007;16:2249–60.

    Article  PubMed  CAS  Google Scholar 

  50. Shahzad M, Sires Campos J, Tariq N, Herraiz Serrano C, Yousaf R, Jiménez-Cervantes C, et al. Identification and functional characterization of natural human melanocortin 1 receptor mutant alleles in Pakistani population. Pigment Cell Melanoma Res. 2015;28:730–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Zanna PT, Sanchez-Laorden BL, Perez-Oliva AB, Turpin MC, Herraiz C, Jimenez-Cervantes C, et al. Mechanism of dimerization of the human melanocortin 1 receptor. Biochem Biophys Res Commun. 2008;368:211–6.

    Article  PubMed  CAS  Google Scholar 

  52. Khaled M. Glycogen synthase kinase 3beta is activated by cAMP and plays an active role in the regulation of melanogenesis. J Biol Chem. 2002;277:33690–7.

    Article  PubMed  CAS  Google Scholar 

  53. Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J. 2007;404:15–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Jo H, Mondal S, Tan D, Nagata E, Takizawa S, Sharma AK, et al. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc Natl Acad Sci USA. 2012;109:10581–6.

    Article  PubMed  Google Scholar 

  55. Zhang T, Dutton-Regester K, Brown KM, Hayward NK. The genomic landscape of cutaneous melanoma. Pigment Cell Melanoma Res. 2016;29:266–83.

    Article  PubMed  CAS  Google Scholar 

  56. d’Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, et al. Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res. 2015;28:520–44.

    Article  PubMed  CAS  Google Scholar 

  57. Chedekel MR, Smith SK, Post PW, Pokora A, Vessell DL. Photodestruction of pheomelanin: role of oxygen. Proc Natl Acad Sci USA. 1978;75:5395–9.

    Article  PubMed  CAS  Google Scholar 

  58. Felix CC, Hyde JS, Sarna T, Sealy RC. Melanin photoreactions in aerated media: electron spin resonance evidence for production of superoxide and hydrogen peroxide. Biochem Biophys Res Commun. 1978;84:335–41.

    Article  PubMed  CAS  Google Scholar 

  59. Simon JD, Peles DN. The red and the black. Acc Chem Res. 2010;43:1452–60.

    Article  PubMed  CAS  Google Scholar 

  60. Panzella L, Leone L, Greco G, Vitiello G, D’Errico G, Napolitano A, et al. Red human hair pheomelanin is a potent pro-oxidant mediating UV-independent contributory mechanisms of melanomagenesis. Pigment Cell Melanoma Res. 2014;27:244–52.

    Article  PubMed  CAS  Google Scholar 

  61. Abdel-Malek ZA, Swope VB, Starner RJ, Koikov L, Cassidy P, Leachman S. Melanocortins and the melanocortin 1 receptor, moving translationally towards melanoma prevention. Arch Biochem Biophys. 2014;563:4–12.

    Article  PubMed  CAS  Google Scholar 

  62. Wolf Horrell EM, Boulanger MC, D’Orazio JA. Melanocortin 1 receptor: structure, function, and regulation. Front Genet. 2016;7:95 https://doi.org/10.3389/fgene.2016.00095.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Robles-Espinoza CD, Roberts ND, Chen S, Leacy FP, Alexandrov LB, Pornputtapong N, et al. Germline MC1R status influences somatic mutation burden in melanoma. Nat Commun. 2016;7:12064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Johansson PA, Pritchard AL, Patch A-M, Wilmott JS, Pearson JV, Waddell N, et al. Mutation load in melanoma is affected by MC1R genotype. Pigment Cell Melanoma Res. 2017;30:255–8.

    Article  PubMed  CAS  Google Scholar 

  65. Jarrett SG, Carter KM, D’Orazio JA. Paracrine regulation of melanocyte genomic stability: a focus on nucleotide excision repair. Pigment Cell Melanoma Res. 2017;30:284–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Abdel-Malek Z, Swope VB, Suzuki I, Akcali C, Harriger MD, Boyce ST, et al. Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc Natl Acad Sci USA. 1995;92:1789–93.

    Article  PubMed  CAS  Google Scholar 

  67. Buscà R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Res. 2000;13:60–9.

    Article  PubMed  Google Scholar 

  68. Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res. 2003;16:523–31.

    Article  PubMed  Google Scholar 

  69. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev. 2004;84:1155–228.

    Article  PubMed  CAS  Google Scholar 

  70. Jarrett SG, Wolf Horrell EM, D’Orazio JA. AKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair. Nucleic Acids Res. 2016;44:10711–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hein A, Ouellette M, Yan Y. Radiation-induced signaling pathways that promote cancer cell survival (Review). Int J Oncol. 2014;45:1813–9. https://doi.org/10.3892/ijo.2014.2614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Toulany M, Kehlbach R, Florczak U, Sak A, Wang S, Chen J, et al. Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Mol Cancer Ther. 2008;7:1772–81.

    Article  PubMed  CAS  Google Scholar 

  73. Habib SL, Yadav A, Kidane D, Weiss RH, Liang S. Novel protective mechanism of reducing renal cell damage in diabetes: activation AMPK by AICAR increased NRF2/OGG1 proteins and reduced oxidative DNA damage. Cell Cycle. 2016;15:3048–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Piao MJ, Kim KC, Choi J-Y, Choi J, Hyun JW. Silver nanoparticles down-regulate Nrf2-mediated 8-oxoguanine DNA glycosylase 1 through inactivation of extracellular regulated kinase and protein kinase B in human Chang liver cells. Toxicol Lett. 2011;207:143–8.

    Article  PubMed  CAS  Google Scholar 

  75. Janjetovic Z, Jarrett SG, Lee EF, Duprey C, Reiter RJ, Slominski AT. Melatonin and its metabolites protect human melanocytes against UVB-induced damage: Involvement of NRF2-mediated pathways. Sci Rep. 2017;7:1274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381–405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol. 2014;27:126–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Ahn J-H, McAvoy T, Rakhilin SV, Nishi A, Greengard P, Nairn AC. Protein kinase A activates protein phosphatase 2A by phosphorylation of the B56delta subunit. Proc Natl Acad Sci USA. 2007;104:2979–84.

    Article  PubMed  CAS  Google Scholar 

  79. Cho E-A, Kim E-J, Kwak S-J, Juhnn Y-S. cAMP signaling inhibits radiation-induced ATM phosphorylation leading to the augmentation of apoptosis in human lung cancer cells. Mol Cancer. 2014;13:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Musante V, Li L, Kanyo J, Lam TT, Colangelo CM, Cheng SK, et al. Reciprocal regulation of ARPP-16 by PKA and MAST3 kinases provides a cAMP-regulated switch in protein phosphatase 2A inhibition. Elife. 2017;6:e24998. https://doi.org/10.7554/eLife.24998.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yang J-L, Chen W-Y, Chen Y-P, Kuo C-Y, Chen S-D. Activation of GLP-1 receptor enhances neuronal base excision repair via PI3K-AKT-induced expression of apurinic/apyrimidinic endonuclease 1. Theranostics. 2016;6:2015–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pan Y, Wang N, Xia P, Wang E, Guo Q, Ye Z. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/Akt/mTOR pathway. Exp Neurol. 2018;300:149–66.

    Article  PubMed  CAS  Google Scholar 

  83. Xu N, Lao Y, Zhang Y, Gillespie DA. Akt: a double-edged sword in cell proliferation and genome stability. J Oncol. 2012;2012:951724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Medrano EE, Im S, Yang F, Abdel-Malek ZA. Ultraviolet B light induces G1 arrest in human melanocytes by prolonged inhibition of retinoblastoma protein phosphorylation associated with long-term expression of the p21Waf-1/SDI-1/Cip-1 protein. Cancer Res. 1995;55:4047–52.

    PubMed  CAS  Google Scholar 

  85. Hustedt N, Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol. 2016;19:1–9.

    Article  PubMed  CAS  Google Scholar 

  86. Perez Oliva AB, Fernendez LP, Detorre C, Herraiz C, Martinez-Escribano JA, Benitez J, et al. Identification and functional analysis of novel variants of the human melanocortin 1 receptor found in melanoma patients. Hum Mutat. 2009;30:811–22.

    Article  PubMed  CAS  Google Scholar 

  87. Sánchez-Laorden BL, Sánchez-Más J, Martínez-Alonso E. Martínez-Menárguez J a, García-Borrón JC, Jiménez-Cervantes C. Dimerization of the human melanocortin 1 receptor: functional consequences and dominant-negative effects. J Invest Dermatol. 2006;126:172–81.

    Article  PubMed  CAS  Google Scholar 

  88. Herraiz C, Olivares C, Castejon-Grinan M, Abrisqueta M, Jimenez-Cervantes C, Garcia-Borron JC. Functional characterization of MC1R-TUBB3 intergenic splice variants of the human melanocortin 1 receptor. PLoS ONE. 2015;10:e0144757.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants SAF2015-67092-R from MINECO (Spain) and FEDER (European Community) and 19875/GERM/15 from Fundación Seneca, Comunidad Autónoma de la Región de Murcia (CARM). M Castejón holds a pre-doctoral fellowship from the Fundación Seneca. Cecilia Herraiz was a Juan de la Cierva-Incorporación fellow of MINECO. We thank Prof. G Ghanem, from the Free University of Brussels for gift of human melanoma cell lines and Prof. Neptuno Rodríguez (University of Murcia) for Hermes melanocytes. We also thank Prof. JL Castejón for help with the statistical analysis of data, Dr. M Abrisqueta for assistance in cell cycle analysis and Dr. A López-Contreras for suggestions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Herraiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castejón-Griñán, M., Herraiz, C., Olivares, C. et al. cAMP-independent non-pigmentary actions of variant melanocortin 1 receptor: AKT-mediated activation of protective responses to oxidative DNA damage. Oncogene 37, 3631–3646 (2018). https://doi.org/10.1038/s41388-018-0216-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0216-1

This article is cited by

Search

Quick links