Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug

Abstract

Aberrant expression of the secretory protein Dickkopf1 (DKK1) is associated with poor prognosis of esophageal squamous cell carcinoma (ESCC), but the underlying mechanism of how DKK1 is involved in aggressiveness of ESCC is not clear. In this study, we show that cytoskeleton-associated protein 4 (CKAP4) functions as a DKK1 receptor in ESCC cells. Immunohistochemical analyses of ESCC revealed that both DKK1 and CKAP4 are minimally expressed in associated normal esophageal squamous mucosa of non-tumor regions, but strongly expressed in tumor lesions. Forty-six of 119 cases (38.7%) were positive for both DKK1 and CKAP4. Those expressing both proteins showed poor prognosis and relapse-free survival. Multivariate analysis demonstrated that expression of both proteins was the poor prognostic factor. The Cancer Genome Atlas data set indicated that the mRNA levels of DKK1 and CKAP4 are significantly elevated in the tumor lesions compared to non-tumor regions. DKK1 bound to CKAP4 at endogenous levels. DKK1 induced the internalization of CKAP4 from and its recycling to the plasma membrane. AKT was activated in ESCC cells in which DKK1 was highly expressed and CKAP4 was localized to the plasma membrane. Knockdown of either DKK1 or CKAP4 inhibited AKT activity and cell proliferation in vitro and xenograft tumor formation. Wild-type CKAP4 or DKK1, but not a DKK1 mutant that was unable to bind to CKAP4, rescued phenotypes induced by CKAP4 or DKK1 knockdown, respectively. The anti-CKAP4 antibody also inhibited AKT activity and suppressed xenograft tumor formation. In contrast, in ESCC cells in which DKK1 was marginally expressed, knockdown of CKAP4 or anti-CKAP4 antibody affected neither AKT activity nor cell proliferation. These findings suggest that the DKK1-CKAP4 pathway promotes ESCC cell proliferation and that CKAP4 might represent a novel therapeutic target for ESCCs expressing both DKK1 and CKAP4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381:400–12.

    Article  Google Scholar 

  2. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–386.

    Article  CAS  Google Scholar 

  3. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–509.

    Article  Google Scholar 

  4. Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15.

    Article  Google Scholar 

  5. Song Y, Li L, Ou Y, Gao Z, Li E, Li X, et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–95.

    Article  CAS  Google Scholar 

  6. Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet. 2014;46:467–73.

    Article  CAS  Google Scholar 

  7. Gao YB, Chen ZL, Li JG, Hu XD, Shi XJ, Sun ZM, et al. Genetic landscape of esophageal squamous cell carcinoma. Nat Genet. 2014;46:1097–102.

    Article  CAS  Google Scholar 

  8. Itakura Y, Sasano H, Shiga C, Furukawa Y, Shiga K, Mori S, et al. Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologic findings and DNA amplification. Cancer. 1994;74:795–804.

    Article  CAS  Google Scholar 

  9. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature. 1998;391:357–62.

    Article  CAS  Google Scholar 

  10. Niehrs C. Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene. 2006;25:7469–81.

    Article  CAS  Google Scholar 

  11. Makino T, Yamasaki M, Takemasa I, Takeno A, Nakamura Y, Miyata H, et al. Dickkopf-1 expression as a marker for predicting clinical outcome in esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16:2058–64.

    Article  Google Scholar 

  12. Li S, Qin X, Liu B, Sun L, Zhang X, Li Z, et al. Dickkopf-1 is involved in invasive growth of esophageal cancer cells. J Mol Histol. 2011;42:491–8.

    Article  Google Scholar 

  13. Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of wnt signaling pathway activation. Int Rev Cell Mol Biol. 2011;291:21–71.

    Article  CAS  Google Scholar 

  14. Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J, et al. Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene. 2006;25:4116–21.

    Article  CAS  Google Scholar 

  15. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.

    Article  CAS  Google Scholar 

  16. Sato N, Yamabuki T, Takano A, Koinuma J, Aragaki M, Masuda K, et al. Wnt inhibitor Dickkopf-1 as a target for passive cancer immunotherapy. Cancer Res. 2010;70:5326–36.

    Article  CAS  Google Scholar 

  17. Yamabuki T, Takano A, Hayama S, Ishikawa N, Kato T, Miyamoto M, et al. Dikkopf-1 as a novel serologic and prognostic biomarker for lung and esophageal carcinomas. Cancer Res. 2007;67:2517–25.

    Article  CAS  Google Scholar 

  18. Kimura H, Fumoto K, Shojima K, Nojima S, Osugi Y, Tomihara H, et al. CKAP4 is a Dickkopf1 receptor and is involved in tumor progression. J Clin Invest. 2016;126:2689–705.

    Article  Google Scholar 

  19. Schweizer A, Ericsson M, Bachi T, Griffiths G, Hauri HP. Characterization of a novel 63 kDa membrane protein. Implications for the organization of the ER-to-Golgi pathway. J Cell Sci. 1993;104:671–83.

    CAS  PubMed  Google Scholar 

  20. Vedrenne C, Hauri HP. Morphogenesis of the endoplasmic reticulum: beyond active membrane expansion. Traffic. 2006;7:639–46.

    Article  CAS  Google Scholar 

  21. Razzaq TM, Bass R, Vines DJ, Werner F, Whawell SA, Ellis V. Functional regulation of tissue plasminogen activator on the surface of vascular smooth muscle cells by the type-II transmembrane proteinp63 (CKAP4). J Biol Chem. 2003;278:42679–85.

    Article  CAS  Google Scholar 

  22. Gupta N, Manevich Y, Kazi AS, Tao JQ, Fisher AB, Bates SR. Identification and characterization of p63 (CKAP4/ERGIC-63/CLIMP-63), a surfactant protein A binding protein, on type II pneumocytes. Am J Physiol Lung Cell Mol Physiol. 2006;291:L436–446.

    Article  CAS  Google Scholar 

  23. Conrads TP, Tocci GM, Hood BL, Zhang CO, Guo L, Koch KR, et al. CKAP4/p63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J Biol Chem. 2006;281:37836–43.

    Article  CAS  Google Scholar 

  24. Li MH, Dong LW, Li SX, Tang GS, Pan YF, Zhang J, et al. Expression of cytoskeleton-associated protein 4 is related to lymphatic metastasis and indicates prognosis of intrahepatic cholangiocarcinoma patients after surgery resection. Cancer Lett. 2013;337:248–53.

    Article  CAS  Google Scholar 

  25. Li SX, Tang GS, Zhou DX, Pan YF, Tan YX, Zhang J, et al. Prognostic significance of cytoskeleton-associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma. Cancer. 2014;120:1520–31.

    Article  CAS  Google Scholar 

  26. Haniu M, Horan T, Spahr C, Hui J, Fan W, Chen C, et al. Human Dickkopf-1 (huDKK1) protein: characterization of glycosylation and determination of disulfide linkages in the two cysteine-rich domains. Protein Sci. 2011;20:1802–13.

    Article  CAS  Google Scholar 

  27. Visser E, Franken IA, Brosens LA, Ruurda JP, van Hillegersberg R. Prognostic gene expression profiling in esophageal cancer: a systematic review. Oncotarget. 2017;8:5566–77.

    Article  Google Scholar 

  28. Goldstein SD, Trucco M, Bautista Guzman W, Hayashi M, Loeb DM. A monoclonal antibody against the Wnt signaling inhibitor dickkopf-1 inhibits osteosarcoma metastasis in a preclinical model. Oncotarget. 2016;7:21114–23.

    Article  Google Scholar 

  29. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood. 2009;114:371–9.

    Article  CAS  Google Scholar 

  30. Bendell JC, Murphy JE, Mahalingam D, Halmos B, Sirard CA, Landau SB et al. Phase I study of DKN-01, an anti-DKK1 antibody, in combination with paclitaxel (pac) in patients (pts) with DKK1+ relapsed or refractory esophageal cancer (EC) or gastro-esophageal junction tumors (GEJ). J Clin Oncol. 2016; 34 Suppl 4S; abstract 111. http://ascopubs.org/doi/abs/10.1200/jco.2016.34.4_suppl.111.

  31. Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17:1709–13.

    Article  CAS  Google Scholar 

  32. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone. 2006;39:754–66.

    Article  CAS  Google Scholar 

  33. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol. 2005;23:1147–57.

    Article  CAS  Google Scholar 

  34. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–87.

    Article  CAS  Google Scholar 

  35. Zhang W, Zhu H, Liu X, Wang Q, Zhang X, He J, et al. Epidermal growth factor receptor is a prognosis predictor in patients with esophageal squamous cell carcinoma. Ann Thorac Surg. 2014;98:513–9.

    Article  Google Scholar 

  36. Gao Z, Meng X, Mu D, Sun X, Yu J. Prognostic significance of epidermal growth factor receptor in locally advanced esophageal squamous cell carcinoma for patients receiving chemoradiotherapy. Oncol Lett. 2014;7:1118–22.

    Article  CAS  Google Scholar 

  37. Gonzalez-Sancho JM, Aguilera O, Garcia JM, Pendas-Franco N, Pena C, Cal S, et al. The Wnt antagonist DICKKOPF-1 gene is a downstream target of b-catenin/TCF and is downregulated in human colon cancer. Oncogene. 2005;24:1098–103.

    Article  CAS  Google Scholar 

  38. Niida A, Hiroko T, Kasai M, Furukawa Y, Nakamura Y, Suzuki Y, et al. DKK1, a negative regulator of Wnt signaling, is a target of the beta-catenin/TCF pathway. Oncogene. 2004;23:8520–6.

    Article  CAS  Google Scholar 

  39. Maehata T, Taniguchi H, Yamamoto H, Nosho K, Adachi Y, Miyamoto N, et al. Transcriptional silencing of Dickkopf gene family by CpG island hypermethylation in human gastrointestinal cancer. World J Gastroenterol. 2008;14:2702–14.

    Article  CAS  Google Scholar 

  40. Fujii S, Matsumoto S, Nojima S, Morii E, Kikuchi A. Arl4c expression in colorectal and lung cancers promotes tumorigenesis and may represent a novel therapeutic target. Oncogene. 2015;34:4834–44.

    Article  CAS  Google Scholar 

  41. Matsumoto S, Fujii S, Sato A, Ibuka S, Kagawa Y, Ishii M, et al. A combination of Wnt and growth factor signaling induces Arl4c expression to form epithelial tubular structures. EMBO J. 2014;33:702–18.

    Article  CAS  Google Scholar 

  42. Shojima K, Sato A, Hanaki H, Tsujimoto I, Nakamura M, Hattori K, et al. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci Rep. 2015;5:8042.

    Article  CAS  Google Scholar 

  43. Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell. 2012;22:66–79.

    Article  CAS  Google Scholar 

  44. Sato A, Kayama H, Shojima K, Matsumoto S, Koyama H, Minami Y, et al. The Wnt5a-Ror2 axis promotes the signaling circuit between interleukin-12 and interferon-g in colitis. Sci Rep. 2015;5:10536.

    Article  CAS  Google Scholar 

  45. Hino S, Tanji C, Nakayama KI, Kikuchi A. Phosphorylation of b-catenin by cyclic AMP-dependent protein kinase stabilizes b-catenin through inhibition of its ubiquitination. Mol Cell Biol. 2005;25:9063–72.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs. Yuri Terao and Yuka Umeki at the Center for Medical Research and Education and Department of Molecular Biology and Biochemistry, respectively, Graduate School of Medicine, Osaka University for the technical assistance for the preparation of MISSION TRC shRNAs and mRNA, and qPCR, and Western blotting. This work was supported by Grants-in-Aid for Scientific Research (2013–2015) (No. 25250018) and to AK (2016–2017) (No. 16H06374) to AK, Grants-in-Aid for Scientific Research on Innovative Areas (2011–2015) (No. 23112004) to AK, Grants-in-Aid for Young Scientists (Start-up) (2016–2017) (No. 16H06944) to HK, and Grant-in-Aid for Young Scientists (B) (2015–2017) (No. T15K198870) to NS from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, and also supported by the Project Promoting Support for Drug Discovery to KF and the Project for Cancer Research And Therapeutic Evolution (P-CREATE) to AK from the Japan Agency for Medical Research and development, AMED, and by grants to AK from the Yasuda Memorial Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kikuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shinno, N., Kimura, H., Sada, R. et al. Activation of the Dickkopf1-CKAP4 pathway is associated with poor prognosis of esophageal cancer and anti-CKAP4 antibody may be a new therapeutic drug. Oncogene 37, 3471–3484 (2018). https://doi.org/10.1038/s41388-018-0179-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-018-0179-2

This article is cited by

Search

Quick links