Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Claudin 18.2 as a novel therapeutic target

Subjects

Abstract

Claudin 18.2, a tight-junction molecule predominantly found in the nonmalignant gastric epithelium, becomes accessible on the tumour cell surface during malignant transformation, thereby providing an appealing target for cancer therapy. Data from two phase III trials testing the anti-claudin 18.2 antibody zolbetuximab have established claudin 18.2-positive advanced-stage gastric cancers as an independent therapeutic subset that derives benefit from the addition of this agent to chemotherapy. This development has substantially increased the percentage of patients eligible for targeted therapy. Furthermore, newer treatments, such as high-affinity monoclonal antibodies, bispecific antibodies, chimeric antigen receptor T cells and antibody–drug conjugates capable of bystander killing effects, have shown considerable promise in patients with claudin 18.2-expressing gastric cancers. This new development has resulted from drug developers moving beyond traditional targets, such as driver gene alterations or growth factors. In this Review, we highlight the biological rationale and explore the clinical activity of therapies that target claudin 18.2 in patients with advanced-stage gastric cancer and explore the potential for expansion of claudin 18.2-targeted therapies to patients with other claudin 18.2-positive solid tumours.

Key points

  • Claudin 18.2 is expressed almost exclusively in the gastric mucosa, and no clear evidence exists of a role of this tight-junction protein in the carcinogenesis and/or proliferation of gastric cancer.

  • Two pivotal phase III trials to test zolbetuximab, a monoclonal antibody that targets claudin 18.2, have demonstrated statistically significant improvements in both the progression-free and overall survival of patients with unresectable gastric cancer and have established claudin 18.2 as a validated therapeutic target.

  • Determination of the optimal treatment sequence, especially for patients who are potentially eligible for several targeted therapies or immunotherapies, as well as the feasibility of biomarker tests for multiple proteins, will be the subject of much debate following the clinical implementation of zolbetuximab.

  • Claudin 18.2 can potentially be targeted using a wide range of therapeutic modalities beyond monoclonal antibodies including bispecific antibodies, antibody–drug conjugates, chimeric antigen receptor T cells and mRNA-based approaches.

  • The development of claudin 18.2-targeted therapies is expanding and will probably encompass other claudin 18.2-positive cancer types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Claudin 18.2 structure, function and expression patterns.
Fig. 2: Claudin 18.2 expression during malignant transformation.
Fig. 3: CLDN18–ARHGAP fusions.
Fig. 4: Mechanisms of action of the various classes of developmental claudin 18.2-targeted therapies.
Fig. 5: Suggested utilization of the diverse range of claudin 18.2-targeted therapy approaches.

Similar content being viewed by others

References

  1. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. & Lordick, F. Gastric cancer. Lancet 396, 635–648 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Kang, Y. K. et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): a randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23, 234–247 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Janjigian, Y. Y. et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet 398, 27–40 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lordick, F. et al. Gastric cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 33, 1005–1020 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Nagatsuma, A. K. et al. Expression profiles of HER2, EGFR, MET and FGFR2 in a large cohort of patients with gastric adenocarcinoma. Gastric Cancer 18, 227–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Nakamura, Y., Kawazoe, A., Lordick, F., Janjigian, Y. Y. & Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat. Rev. Clin. Oncol. 18, 473–487 (2021).

    Article  PubMed  Google Scholar 

  7. Shitara, K. et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature 603, 942–948 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yeong, J. et al. Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric Cancer 25, 741–750 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shitara, K. et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet 401, 1655–1668 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Shah, M. A. et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat. Med. 29, 2133–2141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Qi, C. et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat. Med. 28, 1189–1198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Janjigian, Y. Y. et al. A multi-cohort phase I/IIa clinical trial to evaluate the safety, tolerability, and pharmacokinetics of TST001 administered as a monotherapy, with nivolumab or standard of care in patients with locally advanced or metastatic solid tumors: TransStar101. J. Clin. Oncol. 41, (Suppl. 16), Abstr. TPS4176 (2023).

    Article  Google Scholar 

  13. Xu, R.-H. et al. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 352 (2023).

    Article  Google Scholar 

  14. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Sahin, U. et al. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 14, 7624–7634 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Tsukita, S., Itoh, M., Nagafuchi, A., Yonemura, S. & Tsukita, S. Submembranous junctional plaque proteins include potential tumor suppressor molecules. J. Cell Biol. 123, 1049–1053 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17, 564–580 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Schneeberger, E. E. & Lynch, R. D. Structure, function, and regulation of cellular tight junctions. Am. J. Physiol. 262, L647–L661 (1992).

    CAS  PubMed  Google Scholar 

  19. Gunzel, D. & Yu, A. S. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525–569 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gumbiner, B. M. Breaking through the tight junction barrier. J. Cell Biol. 123, 1631–1633 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Anderson, J. M. & Van Itallie, C. M. Tight junctions and the molecular basis for regulation of paracellular permeability. Am. J. Physiol. 269, G467–G475 (1995).

    CAS  PubMed  Google Scholar 

  22. Staehelin, L. A. Further observations on the fine structure of freeze-cleaved tight junctions. J. Cell Sci. 13, 763–786 (1973).

    Article  CAS  PubMed  Google Scholar 

  23. Tsukita, S. & Furuse, M. Pores in the wall: claudins constitute tight junction strands containing aqueous pores. J. Cell Biol. 149, 13–16 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K. & Tsukita, S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J. Cell Biol. 141, 1539–1550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morin, P. J. Claudin proteins in human cancer: promising new targets for diagnosis and therapy. Cancer Res. 65, 9603–9606 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Niimi, T. et al. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol. Cell Biol. 21, 7380–7390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Türeci, O. et al. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene 481, 83–92 (2011).

    Article  PubMed  Google Scholar 

  28. Sahin, U. et al. FAST: a randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 32, 609–619 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Jovov, B. et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G1106–G1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi, D. et al. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1beta, and atrophic gastritis in mice. Gastroenterology 142, 292–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hewitt, K. J., Agarwal, R. & Morin, P. J. The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6, 186 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jun, K. H., Kim, J. H., Jung, J. H., Choi, H. J. & Chin, H. M. Expression of claudin-7 and loss of claudin-18 correlate with poor prognosis in gastric cancer. Int. J. Surg. 12, 156–162 (2014).

    Article  PubMed  Google Scholar 

  33. Chen, X. et al. Clinicopathological significance of claudin 4 expression in gastric carcinoma: a systematic review and meta-analysis. Oncol. Targets Ther. 27, 3205–3212 (2016).

    Google Scholar 

  34. Park, J. Y. et al. Up-regulated claudin 7 expression in intestinal-type gastric carcinoma. Oncol. Rep. 18, 377–382 (2007).

    CAS  PubMed  Google Scholar 

  35. Kohmoto, T. et al. Claudin-6 is a single prognostic marker and functions as a tumor-promoting gene in a subgroup of intestinal type gastric cancer. Gastric Cancer 23, 403–417 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Hedrick, L., Cho, K. R. & Vogelstein, B. Cell adhesion molecules as tumour suppressors. Trends Cell Biol. 3, 36–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Resnick, M. B., Konkin, T., Routhier, J., Sabo, E. & Pricolo, V. E. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod. Pathol. 18, 511–518 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Al Moustafa, A. E. et al. Identification of genes associated with head and neck carcinogenesis by cDNA microarray comparison between matched primary normal epithelial and squamous carcinoma cells. Oncogene 21, 2634–2640 (2002).

    Article  PubMed  Google Scholar 

  39. Sanada, Y. et al. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J. Pathol. 208, 633–642 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Matsuda, Y. et al. Gastric and intestinal claudin expression at the invasive front of gastric carcinoma. Cancer Sci. 98, 1014–1019 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Dottermusch, M., Kruger, S., Behrens, H. M., Halske, C. & Rocken, C. Expression of the potential therapeutic target claudin-18.2 is frequently decreased in gastric cancer: results from a large Caucasian cohort study. Virchows Arch. 475, 563–571 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oshima, T. et al. Down-regulation of claudin-18 is associated with the proliferative and invasive potential of gastric cancer at the invasive front. PLoS ONE 8, e74757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, S. J. et al. miR-1303 targets claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Dig. Dis. Sci. 59, 1754–1763 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Suzuki, K. et al. Deficiency of stomach-type claudin-18 in mice induces gastric tumor formation independent of H. pylori infection. Cell Mol. Gastroenterol. Hepatol. 8, 119–142 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Swisshelm, K., Macek, R. & Kubbies, M. Role of claudins in tumorigenesis. Adv. Drug Deliv. Rev. 57, 919–928 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

    Article  Google Scholar 

  47. Zhang, W. H. et al. The significance of the CLDN18-ARHGAP fusion gene in gastric cancer: a systematic review and meta-analysis. Front. Oncol. 10, 1214 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Nakayama, I. et al. Enrichment of CLDN18-ARHGAP fusion gene in gastric cancers in young adults. Cancer Sci. 110, 1352–1363 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kataoka, K. & Ogawa, S. Variegated RHOA mutations in human cancers. Exp. Hematol. 44, 1123–1129 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, H. et al. RhoGAP domain-containing fusions and PPAPDC1A fusions are recurrent and prognostic in diffuse gastric cancer. Nat. Commun. 9, 4439 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Komatsu, M. et al. ARHGAP-RhoA signaling provokes homotypic adhesion-triggered cell death of metastasized diffuse-type gastric cancer. Oncogene 41, 4779–4794 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Tanaka, M. et al. Claudin-18 is an early-stage marker of pancreatic carcinogenesis. J. Histochem. Cytochem. 59, 942–952 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sanada, Y. et al. Immunohistochemical study of claudin 18 involvement in intestinal differentiation during the progression of intraductal papillary mucinous neoplasm. Anticancer Res. 30, 2995–3003 (2010).

    PubMed  Google Scholar 

  54. Lee, J. H. et al. Immunohistochemical analysis of claudin expression in pancreatic cystic tumors. Oncol. Rep. 25, 971–978 (2011).

    PubMed  Google Scholar 

  55. Shinozaki, A. et al. Claudin-18 in biliary neoplasms. Its significance in the classification of intrahepatic cholangiocarcinoma. Virchows Arch. 459, 73–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Matsuda, M. et al. Immunohistochemical analysis of colorectal cancer with gastric phenotype: claudin-18 is associated with poor prognosis. Pathol. Int. 60, 673–680 (2010).

    Article  PubMed  Google Scholar 

  57. Woll, S. et al. Claudin 18.2 is a target for IMAB362 antibody in pancreatic neoplasms. Int. J. Cancer 134, 731–739 (2014).

    Article  PubMed  Google Scholar 

  58. Micke, P. et al. Aberrantly activated claudin 6 and 18.2 as potential therapy targets in non-small-cell lung cancer. Int. J. Cancer 135, 2206–2214 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Keira, Y. et al. An immunohistochemical marker panel including claudin-18, maspin, and p53 improves diagnostic accuracy of bile duct neoplasms in surgical and presurgical biopsy specimens. Virchows Arch. 466, 265–277 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Takasawa, K. et al. Claudin-18 coupled with EGFR/ERK signaling contributes to the malignant potentials of bile duct cancer. Cancer Lett. 403, 66–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Iwaya, M. et al. Colitis-associated colorectal adenocarcinomas frequently express claudin 18 isoform 2: implications for claudin 18.2 monoclonal antibody therapy. Histopathology 79, 227–237 (2021).

    Article  PubMed  Google Scholar 

  62. Zhang, Z., Liu, X., Zhou, L., Zhang, M. & Liang, Z. Investigation of clinical application of claudin 18 isoform 2 in pancreatic ductal adenocarcinoma: a retrospective analysis of 302 Chinese patients. Histol. Histopathol. 37, 1031–1040 (2022).

    CAS  PubMed  Google Scholar 

  63. Arpa, G. et al. Claudin-18 expression in small bowel adenocarcinoma: a clinico-pathologic study. Virchows Arch. 481, 853–863 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, X. et al. Claudin 18.2 is a potential therapeutic target for zolbetuximab in pancreatic ductal adenocarcinoma. World J. Gastrointest. Oncol. 14, 1252–1264 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang, F. et al. Claudin18.2 as a potential therapeutic target for primary ovarian mucinous carcinomas and metastatic ovarian mucinous carcinomas from upper gastrointestinal primary tumours. BMC Cancer 23, 44 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kayikcioglu, E. & Yuceer, R. O. The role of claudin 18.2 and HER-2 in pancreatic cancer outcomes. Medicine 102, e32882 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, S. et al. Clinicopathological features and prognosis of resected pancreatic ductal adenocarcinoma patients with claudin-18 overexpression. J. Clin. Med. 12, 5394 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yano, K., Imaeda, T. & Niimi, T. Transcriptional activation of the human claudin-18 gene promoter through two AP-1 motifs in PMA-stimulated MKN45 gastric cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G336–G343 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Ito, T. et al. Transcriptional regulation of claudin-18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells. J. Cell Biochem. 112, 1761–1772 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Chen, J. et al. Targeting CLDN18.2 in cancers of the gastrointestinal tract: new drugs and new indications. Front. Oncol. 13, 1132319 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moentenich, V. et al. Claudin 18.2 expression in esophageal adenocarcinoma and its potential impact on future treatment strategies. Oncol. Lett. 19, 3665–3670 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Karanjawala, Z. E. et al. New markers of pancreatic cancer identified through differential gene expression analyses: claudin 18 and annexin A8. Am. J. Surg. Pathol. 32, 188–196 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sanada, Y. et al. Histopathologic evaluation of stepwise progression of pancreatic carcinoma with immunohistochemical analysis of gastric epithelial transcription factor SOX2: comparison of expression patterns between invasive components and cancerous or nonneoplastic intraductal components. Pancreas 32, 164–170 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Halimi, S. A. et al. Claudin-18 overexpression in intestinal-type mucinous borderline tumour of the ovary. Histopathology 63, 534–544 (2013).

    Article  PubMed  Google Scholar 

  75. Halimi, S. A. et al. Comprehensive immunohistochemical analysis of the gastrointestinal and Mullerian phenotypes of 139 ovarian mucinous cystadenomas. Hum. Pathol. 109, 21–30 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Kubota, Y. et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open 8, 100762 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kayikcioglu, E., Yuceer, R. O., Cetin, B., Yuceer, K. & Karahan, N. Prognostic value of claudin 18.2 expression in gastric adenocarcinoma. World J. Gastrointest. Oncol. 15, 343–351 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jia, K. et al. Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. BMC Med. 20, 223 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arnold, A. et al. Prognostic impact of claudin 18.2 in gastric and esophageal adenocarcinomas. Clin. Transl. Oncol. 22, 2357–2363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, S. R. et al. Clinical significance of CLDN18.2 expression in metastatic diffuse-type gastric cancer. J. Gastric Cancer 20, 408–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong, J. Y. et al. Claudin 18.2 expression in various tumor types and its role as a potential target in advanced gastric cancer. Transl. Cancer Res. 9, 3367–3374 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rohde, C. et al. Comparison of claudin 18.2 expression in primary tumors and lymph node metastases in Japanese patients with gastric adenocarcinoma. Jpn J. Clin. Oncol. 49, 870–876 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Baek, J. H. et al. Clinical implications of claudin18.2 expression in patients with gastric cancer. Anticancer Res. 39, 6973–6979 (2019).

    Article  PubMed  Google Scholar 

  84. Coati, I. et al. Claudin-18 expression in oesophagogastric adenocarcinomas: a tissue microarray study of 523 molecularly profiled cases. Br. J. Cancer 121, 257–263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ungureanu, B. S. et al. Clinicopathologic relevance of claudin 18.2 expression in gastric cancer: a meta-analysis. Front. Oncol. 11, 643872 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moran, D., Maurus, D., Rohde, C. & Arozullah, A. 103P. Prevalence of CLDN18.2, HER2 and PD-L1 in gastric cancer samples. Ann. Oncol. 29, viii32 (2018).

    Article  Google Scholar 

  87. Shitara, K. et al. Global prevalence of CLDN18.2 in patients with locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma: biomarker analysis of two zolbetuximab phase 3 studies (SPOTLIGHT and GLOW). J. Clin. Oncol. 41, (Suppl. 16), Abstr. 4035 (2023).

    Article  Google Scholar 

  88. Pellino, A. et al. Association of CLDN18 protein expression with clinicopathological features and prognosis in advanced gastric and gastroesophageal junction adenocarcinomas. J. Pers. Med. 11, 1095 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xu, B. et al. Highly expressed claudin18.2 as a potential therapeutic target in advanced gastric signet-ring cell carcinoma (SRCC). J. Gastrointest. Oncol. 11, 1431–1439 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Shu, Y. et al. Prognostic significance of frequent CLDN18-ARHGAP26/6 fusion in gastric signet-ring cell cancer. Nat. Commun. 9, 2447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Li, J. et al. Analysis of the expression and genetic alteration of CLDN18 in gastric cancer. Aging 12, 14271–14284 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kim, S. T. et al. Comprehensive molecular characterization of gastric cancer patients from phase II second-line ramucirumab plus paclitaxel therapy trial. Genome Med. 13, 11 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lenz, A. et al. Claudin 18 (CLDN18) gene expression and related molecular profile in gastric cancer (GC). J. Clin. Oncol. 40, (Suppl. 16), Abstr. 4048 (2022).

    Article  Google Scholar 

  94. Shinozaki, A. et al. Epstein-Barr virus-associated gastric carcinoma: a distinct carcinoma of gastric phenotype by claudin expression profiling. J. Histochem. Cytochem. 57, 775–785 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fukayama, M. et al. Thirty years of Epstein-Barr virus-associated gastric carcinoma. Virchows Arch. 476, 353–365 (2020).

    Article  PubMed  Google Scholar 

  96. Kadono, T. et al. The impact of claudin-18.2 expression in patients with advanced gastric cancer treated with nivolumab. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 439 (2023).

    Article  Google Scholar 

  97. Wang, Y. et al. 1230P. Immunotherapies for gastric cancer with CLDN18-ARHGAP fusion gene. Ann. Oncol. 33, S1112 (2022).

    Article  Google Scholar 

  98. Kumagai, S. et al. An oncogenic alteration creates a microenvironment that promotes tumor progression by conferring a metabolic advantage to regulatory T cells. Immunity 53, 187–203.e188 (2020).

    Article  CAS  PubMed  Google Scholar 

  99. Shitara, K. et al. Phase 1 trial of zolbetuximab in Japanese patients with CLDN18.2+ gastric or gastroesophageal junction adenocarcinoma. Cancer Sci. 114, 1606–1615 (2023).

    Article  CAS  PubMed  Google Scholar 

  100. Lordick, F. et al. Health-related quality of life (hrqol) in patients with claudin-18 isoform 2-positive (CLDN18.2+) locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mg/GEJ) adenocarcinoma: results from SPOTLIGHT and GLOW. Ann. Oncol. 34, S852–S886 (2023).

    Google Scholar 

  101. Nakayama, T. et al. 2P Antitumor activity of zolbetuximab combined with chemotherapy and anti-mouse P42. PD-1 antibody (anti-mPD-1) in a syngeneic mouse model and a virtual preclinical trial using a quantitative systems pharmacology (QSP) model [abstr.]. Ann. Oncol. 33, S559–S560 (2022).

    Article  Google Scholar 

  102. Yang, J. et al. Clinical pharmacology profile of the claudin 18.2 antibody zolbetuximab. J. Clin. Oncol. 42, (Suppl. 3), Abstr. 316 (2024).

    Article  Google Scholar 

  103. Shen, L. et al. 1254P Updated report of a phase I study of TST001, a humanized anti-CLDN18.2 monoclonal antibody, in combination with capecitabine and oxaliplatin (CAPOX) as a first-line treatment of advanced G/GEJ cancer. Ann. Oncol. 33, S1121 (2022).

    Article  Google Scholar 

  104. Gong, J. et al. A phase I study of TST001, a high affinity humanized anti-CLDN18.2 monoclonal antibody, in combination with capecitabine and oxaliplatin (CAPOX) as a first-line treatment of advanced G/GEJ cancer. J. Clin. Oncol. 40, (Suppl. 16) abstr. 4062 (2022).

    Article  Google Scholar 

  105. Shen, L. et al. Osemitamab in combination with capecitabine and oxaliplatin (CAPOX) as a first line treatment of advanced G/GEJ cancer: updated data of cohort C from a phase I/IIa, multi-center study (TranStar102/TST001-1002). J. Clin. Oncol. 41, (Suppl. 16), Abstr. 4046 (2023).

    Article  Google Scholar 

  106. Guo, W. et al. TST001 (a high affinity humanized anti-claudin18.2 monoclonal antibody) in combination with nivolumab plus capecitabine and oxaliplatin as first-line or with nivolumab as late-line treatment in locally advanced and metastatic gastric/gastroesophageal junction (G/GEJ) cancer: design of cohorts from a phase I/IIa study (TST001-1002). J. Clin. Oncol. 41, (Suppl. 4), Abstr. TPS476 (2023).

    Article  Google Scholar 

  107. Li, J. et al. A multicenter, phase 1 study of AB011, a recombinant humanized anti-CLDN18.2 monoclonal antibody, as monotherapy and combined with capecitabine and oxaliplatin (CAPOX) in patients with advanced solid tumors. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 391 (2023).

    Article  Google Scholar 

  108. Huang, J. et al. Safety and preliminary efficacy of MIL93 in patients with advanced solid tumors: the monotherapy part of a phase 1 trial. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 798 (2023).

    Article  Google Scholar 

  109. Zhang, M. et al. A phase I/II study of ASKB589 (anti-claudin 18.2 [CLDN18.2] monoclonal antibody) in patients with solid tumors. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 397 (2023).

    Article  Google Scholar 

  110. Peng, Z. et al. A phase Ib/II study of ASKB589 (anti-claudin 18.2 [CLDN18.2] monoclonal antibody) combined with CAPOX and PD-1 inhibitor as first-line treatment for locally advanced, relapsed and metastatic gastric/gastro-esophageal junction (G/GEJ) adenocarcinoma. J. Clin. Oncol. 42, (Suppl. 3), Abstr. 317 (2024).

    Article  Google Scholar 

  111. Konno, H. et al. ZL-1211 exhibits robust antitumor activity by enhancing ADCC and activating NK cell-mediated inflammation in CLDN18.2-high and -low expressing gastric cancer models. Cancer Res. Commun. 2, 937–950 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sharma, S. et al. Preliminary results of a phase 1/2, first-in-human, open-label, dose escalation study of ZL-1211 (anti-Claudin 18.2 mAb) in patients with unresectable or metastatic solid tumors. J. Clin. Oncol. 41, (Suppl. 16), Abstr. 2537 (2023).

    Article  Google Scholar 

  113. Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Kantarjian, H. et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376, 836–847 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gong, J. et al. Safety results of Q-1802, a Claudin18.2/PD-L1 bsABs, in patients with relapsed or refractory solid tumors in a phase 1 study. J. Clin. Oncol. 40 (suppl 16), abstr. 2568 (2022).

  117. Wang, Y. K. et al. Interim results of a first-in-human phase 1 study of Q-1802, a CLDN18.2/PD-L1 bsABs, in patients with relapsed or refractory solid tumors. J. Clin. Oncol. 41, (Suppl. 4), Abstr. 382 (2023).

    Article  Google Scholar 

  118. Overman, M. J. A phase I, first-in-human, open-label, dose escalation and expansion study of PT886 in adult patients with advanced gastric, gastroesophageal junction, and pancreatic adenocarcinomas. J. Clin. Oncol. 41, (Suppl. 4), Abstr. TPS765 (2023).

    Article  Google Scholar 

  119. Gao, J. et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J. Immunother. Cancer 11, e006704 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Jiang, W., Wang, Z., Sheng, Z., Jung, J. & Taylor, G. 702 TJ-CD4B (ABL111), a claudin18. 2-targeted 4-1BB tumor engager induces potent tumor-dependent immune response without dose-limiting toxicity in preclinical studies. J. Immunother. Cancer 9, A730 (2021).

    Article  Google Scholar 

  121. Hong, M., Clubb, J. D. & Chen, Y. Y. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell 38, 473–488 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jiang, H. et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J. Natl Cancer Inst. 111, 409–418 (2019).

    Article  PubMed  Google Scholar 

  125. Zhan, X. et al. Phase I trial of claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol. 37, (Suppl. 15), Abstr. 2509 (2019).

    Article  Google Scholar 

  126. FDA. FDA investigating serious risk of T-cell malignancy following BCMA-directed or CD19-directed autologous chimeric antigen receptor (CAR) T cell immunotherapies. https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-investigating-serious-risk-t-cell-malignancy-following-bcma-directed-or-cd19-directed-autologous (2023).

  127. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Modi, S. et al. Trastuzumab deruxtecan in previously treated HER2-positive breast cancer. N. Engl. J. Med. 382, 610–621 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Cortes, J. et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 386, 1143–1154 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Chau, C. H., Steeg, P. S. & Figg, W. D. Antibody-drug conjugates for cancer. Lancet 394, 793–804 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Drago, J. Z., Modi, S. & Chandarlapaty, S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 18, 327–344 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Wang, Y. et al. First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting claudin 18.2 in patients with resistant/refractory solid tumors. J. Clin. Oncol. 41, (Suppl. 16), Abstr. 3016 (2023).

    Article  Google Scholar 

  133. ELEVATIONONCOLOGY. First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting Claudin 18.2 in patients with resistant/refractory solid tumors. https://elevationoncology.com/first-in-human-dose-escalation-and-expansion-study-of-sysa1801-an-antibody-drug-conjugate-targeting-claudin-18-2-in-patients-with-resistant-refractory-solid-tumors/ (2023).

  134. KEYMEDBIO. https://en.keymedbio.com/uploadfile/2021/1217/20211217042321237.pdf (2021).

  135. Jain, N., Smith, S. W., Ghone, S. & Tomczuk, B. Current ADC linker chemistry. Pharm. Res. 32, 3526–3540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. INNOVENT. Innovent Biologics 2022 Annual Results. https://img.innoventbio.com/Innovent2022AnnualResultsPresentation_MainFile_20230328.pdf (2023).

  137. Qin, S. et al. mRNA-based therapeutics: powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 7, 166 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sahin, U., Karikó, K. & Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug. Discov. 13, 759–780 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Bähr-Mahmud, H. et al. Preclinical characterization of an mRNA-encoded anti-claudin 18.2 antibody. Oncoimmunology 12, 2255041 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Papadopoulos, K. P. et al. A phase I/II dose escalation and expansion trial to evaluate safety and preliminary efficacy of BNT141 in patients with claudin-18.2-positive solid tumors. J. Clin. Oncol. 41 (suppl. 16), TPS2670 (2023).

  141. Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 40, 107534 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Rha, Y. S. et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 24, 1181–1195 (2023).

    Article  CAS  PubMed  Google Scholar 

  143. Wainberg, Z. A. et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 23, 1430–1440 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Weng, J. et al. Effects of antiemetics on zolbetuximab-induced gastric injury and emesis frequency in ferrets. Ann. Oncol. 34, (Suppl. 2), S198 (2023).

    Article  Google Scholar 

  145. Shitara, K. et al. Management of nausea and vomiting following first-line zolbetuximab + chemotherapy treatment in CLDN18.2+, HER2–, locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma: analysis from the phase 3 SPOTLIGHT and GLOW studies. J. Clin. Oncol. 42 (suppl. 3), abstr.372 (2024).

  146. Konecny, G. E. et al. First-in-human phase I study of a novel claudin 6 (CLDN6) targeted antibody drug conjugate (ADC) TORL-1-23. Ann. Oncol. 34, (Suppl. 2), S517 (2023).

    Article  Google Scholar 

  147. Mackensen, A. et al. CLDN6-specific CAR-T cells plus amplifying RNA vaccine in relapsed or refractory solid tumors: the phase 1 BNT211-01 trial. Nat. Med. 29, 2844–2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Türeci, O. et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: the MONO study. Ann. Oncol. 30, 1487–1495 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge T. Kuwata of National Cancer Center Hospital East, Kashiwa, Japan for providing images used in this publication.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding authors

Correspondence to Lin Shen or Kohei Shitara.

Ethics declarations

Competing interests

Y.N. has acted as consultant and/or adviser of Daiichi Sankyo, Exact Sciences Corporation, Gilead Sciences, Guardant Health, Natera, Premo Partners, Roche, Seagen, Takeda Pharmaceutical and has acted as a speaker for Becton Dickinson and Company, CareNet, Chugai Pharmaceutical, Daiichi Sankyo, Eisai, Guardant Health, Genomedia, Hisamitsu, Merck, Miyarisan, MSD, Roche Diagnostics, Seagen, Taiho Pharmaceutical, Tempus Labs, Zeria Pharmaceutical. K.S. has acted as a consultant and/or adviser of ALX Oncology, Inc., Amgen, Astellas, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol Myers Squibb, Daiichi Sankyo, Guardant Health Japan, Janssen, Merck Pharmaceutical, Novartis, Ono Pharmaceutical, Takeda, Zymeworks Biopharmaceuticals and has received (institutional) research funding from Astellas, Amgen, Chugai, Daiichi Sankyo, Eisai, Merck Pharmaceutical, Ono Pharmaceutical, PRA Health Sciences, Syneos Health and Taiho Pharmaceutical. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Clinical Oncology thanks M. Fassan, J. Lim, H. Van Laarhoven and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, I., Qi, C., Chen, Y. et al. Claudin 18.2 as a novel therapeutic target. Nat Rev Clin Oncol 21, 354–369 (2024). https://doi.org/10.1038/s41571-024-00874-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41571-024-00874-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing