Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-FGFR1 chimeric kinase

Abstract

MicroRNAs (miRNAs) have pathogenic roles in the development of a variety of leukemias. Here we identify miRNAs that have important roles in the development of B lymphomas resulting from the expression of the chimeric BCR-FGFR1 kinase. The miR-17/92 cluster was particularly implicated and forced expression resulted in increased cell proliferation, while inhibiting its function using miRNA sponges reduced cell growth and induced apoptosis. Cells treated with the potent BGJ389 FGFR1 inhibitor led to miR-17/92 downregulation, suggesting regulation by FGFR1. Transient luciferase reporter assays and qRT-PCR detection of endogenous miR-17/92 expression in stable transduced cell lines demonstrated that BCR-FGFR1 can regulate miR-17/92 expression. This positive association of miR-17/92 with BCR-FGFR1 was also confirmed in primary mouse SCLL tissues and primary human CLL samples. miR-17/92 promotes cell proliferation and survival by targeting CDKN1A and PTEN in B-lymphoma cell lines and primary tumors. An inverse correlation in expression levels was seen between miR-17/92 and both CDKN1A and PTEN in two cohorts of CLL patients. Finally, in vivo engraftment studies demonstrated that manipulation of miR-17/92 was sufficient to affect BCR-FGFR1-driven leukemogenesis. Overall, our results define miR-17/92 as a downstream effector of FGFR1 in BCR-FGFR1-driven B-cell lymphoblastic leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Identification of miRNAs regulated by chimeric FGFR1 kinase.
Fig. 2: Forced expression of miRNA-17/92 promotes growth in BCR-FGFR1-expressing B-lymphoma cells.
Fig. 3: Inhibition of the miR-17/92 family members leads to suppression of cell growth and increases apoptosis.
Fig. 4: Forced expression of members of the miR-17/92 cluster can ameliorate BGJ398 suppression of FGFR1 activation.
Fig. 5: Regulation of miR-17/92 expression by FGFR1.
Fig. 6: miR-17/92 targets CDKN1A and PTEN in FGFR1-driven leukemogenesis
Fig. 7: Manipulation of miR-17/92 affects FGFR1-driven leukemogenesis in vivo.

Similar content being viewed by others

References

  1. Kumar KR, Chen W, Koduru PR, Luu HS. Myeloid and lymphoid neoplasm with abnormalities of FGFR1 presenting with trilineage blasts and RUNX1 rearrangement: a case report and review of literature. Am J Clin Pathol. 2015;143:738–48.

    Article  CAS  PubMed  Google Scholar 

  2. Macdonald D, Reiter A, Cross NC. The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol. 2002;107:101–7.

    Article  CAS  PubMed  Google Scholar 

  3. Roumiantsev S, Krause DS, Neumann CA, Dimitri CA, Asiedu F, Cross NC, et al. Distinct stem cell myeloproliferative/T lymphoma syndromes induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11 translocations. Cancer Cell. 2004;5:287–98.

    Article  CAS  PubMed  Google Scholar 

  4. Jackson CC, Medeiros LJ, Miranda RN. 8p11 myeloproliferative syndrome: a review. Hum Pathol. 2010;41:461–76.

    Article  CAS  PubMed  Google Scholar 

  5. Guasch G, Delaval B, Arnoulet C, Xie MJ, Xerri L, Sainty D, et al. FOP-FGFR1 tyrosine kinase, the product of a t(6;8) translocation, induces a fatal myeloproliferative disease in mice. Blood. 2004;103:309–12.

    Article  CAS  PubMed  Google Scholar 

  6. Ren M, Li X, Cowell JK. Genetic fingerprinting of the development and progression of T-cell lymphoma in a murine model of atypical myeloproliferative disorder initiated by the ZNF198-fibroblast growth factor receptor-1 chimeric tyrosine kinase. Blood. 2009;114:1576–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agerstam H, Jaras M, Andersson A, Johnels P, Hansen N, Lassen C, et al. Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice. Blood. 2010;116:2103–11.

    Article  PubMed  Google Scholar 

  8. Ren M, Tidwell JA, Sharma S, Cowell JK. Acute progression of BCR-FGFR1 induced murine B-lympho/myeloproliferative disorder suggests involvement of lineages at the pro-B cell stage. PLoS ONE. 2012;7:e38265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cowell JK, Qin H, Chang CS, Kitamura E, Ren M. A model of BCR-FGFR1 driven human AML in immunocompromised mice. Br J Haematol. 2016;175:542–5.

    Article  CAS  PubMed  Google Scholar 

  10. Qin H, Wu Q, Cowell JK, Ren M. FGFR1OP2-FGFR1 induced myeloid leukemia and T-cell lymphoma in a mouse model. Haematologica. 2016;101:e91–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ren M, Qin H, Wu Q, Savage NM, George TI, Cowell JK. Development of ZMYM2-FGFR1 driven AML in human CD34+cells in immunocompromised mice. Int J Cancer. 2016;139:836–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demiroglu A, Steer EJ, Heath C, Taylor K, Bentley M, Allen SL, et al. The t(8;22) in chronic myeloid leukemia fuses BCR to FGFR1: transforming activity and specific inhibition of FGFR1 fusion proteins. Blood. 2001;98:3778–83.

    Article  CAS  PubMed  Google Scholar 

  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  14. Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, et al. Reprogramming of miRNA networks in cancer and leukemia. Genome Res. 2010;20:589–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood. 2011;117:1121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, et al. A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet. 2011;43:673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Q, Bhole A, Qin H, Karp J, Malek S, Cowell JK, et al. SCLLTargeting FGFR1 to suppress leukemogenesis in syndromic and de novo AML in murine models. Oncotarget. 2016;7:49733–42.

    PubMed  PubMed Central  Google Scholar 

  18. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 2004;64:3087–95.

    Article  CAS  PubMed  Google Scholar 

  19. Xie B, Ding Q, Han H, Wu D. miRCancer: a microRNA-cancer association database constructed by text mining on literature. Bioinformatics. 2013;29:638–44.

    Article  CAS  PubMed  Google Scholar 

  20. Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell. 2009;138:673–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eekels JJ, Pasternak AO, Schut AM, Geerts D, Jeeninga RE, Berkhout B. A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation. Gene Ther. 2012;19:1058–64.

    Article  CAS  PubMed  Google Scholar 

  22. Kim KH, Sederstrom JM. Assaying cell cycle status using flow Cytometry. Curr Protoc Mol Biol. 2015;111:28.6. 1–28.6.11.

    Article  Google Scholar 

  23. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.

    Article  CAS  PubMed  Google Scholar 

  24. Morabito F, Mosca L, Cutrona G, Agnelli L, Tuana G, Ferracin M, et al. Clinical monoclonal B lymphocytosis versus Rai 0 chronic lymphocytic leukemia: a comparison of cellular, cytogenetic, molecular, and clinical features. Clin Cancer Res. 2013;19:5890–5900.

    Article  CAS  PubMed  Google Scholar 

  25. Maura F, Cutrona G, Mosca L, Matis S, Lionetti M, Fabris S, et al. Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia. Leuk Lymphoma. 2015;56:3150–8.

    Article  CAS  PubMed  Google Scholar 

  26. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ. 2013;20:1603–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ren M, Cowell JK. Constitutive Notch pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas associated with atypical myeloproliferative disease. Blood. 2011;117:6837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.

    Article  CAS  PubMed  Google Scholar 

  29. Ornitz DM, Itoh N. The fibroblast growth factor signaling pathway. Wiley Interdiscip Rev Dev Biol. 2015;4:215–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou L, Liang X, Zhang L, Yang L, Nagao N, Wu H, et al. MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget. 2016;7:51943–54.

    PubMed  PubMed Central  Google Scholar 

  31. Lai NS, Dong QS, Ding H, Miao ZL, Lin YC. MicroRNA-210 overexpression predicts poorer prognosis in glioma patients. J Clin Neurosci. 2014;21:755–60.

    Article  CAS  PubMed  Google Scholar 

  32. Pan Y, Meng M, Zhang G, Han H, Zhou Q. Oncogenic microRNAs in the genesis of leukemia and lymphoma. Curr Pharm Des. 2014;20:5260–7.

    Article  CAS  PubMed  Google Scholar 

  33. Veronese A, Lupini L, Consiglio J, Visone R, Ferracin M, Fornari F, et al. Oncogenic role of miR-483-3p at the IGF2/483 locus. Cancer Res. 2010;70:3140–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Petrocca F, Vecchione A, Croce CM. Emerging role of miR-106b-25/miR-17-92 clusters in the control of transforming growth factor beta signaling. Cancer Res. 2008;68:8191–4.

    Article  CAS  PubMed  Google Scholar 

  35. Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K. MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood. 2009;113:396–402.

    Article  CAS  PubMed  Google Scholar 

  36. Mu P, Han YC, Betel D, Yao E, Squatrito M, Ogrodowski P, et al. Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. Genes Dev. 2009;23:2806–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon-Cardo C, et al. miR-19 is a key oncogenic component of mir-17-92. Gene Dev. 2009;23:2839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, et al. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence. Cancer Res. 2010;70:8547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A, et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA. 2010;107:3710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gao J, Li L, Wu M, Liu M, Xie X, Guo J, et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1. PLoS ONE. 2013;8:e65138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang X, Huang H, Li ZJ, Li YY, Wang X, Gurbuxani S, et al. Blockade of miR-150 maturation by MLL-Fusion/MYC/LIN-28 is required for MLL-associated leukemia. Cancer Cell. 2012;22:524–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang X, Bugno J, Hu C, Yang Y, Herold T, Qi J, et al. Eradication of acute myeloid leukemia with FLT3 ligand-targeted miR-150 nanoparticles. Cancer Res. 2016;76:4470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Z, Tsuchiya H, Zhang Y, Hartnett ME, Wang L. MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. J Biol Chem. 2013;288:28893–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiao F, Zhang W, Chen L, Chen F, Xie H, Xing C, et al. MicroRNA-503 inhibits the G1/S transition by downregulating cyclin D3 and E2F3 in hepatocellular carcinoma. J Transl Med. 2013;11:195.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ren M, Qin H, Ren R, Tidwell J, Cowell JK. Src activation plays an important key role in lymphomagenesis induced by FGFR1 fusion kinases. Cancer Res. 2011;71:7312–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu S, Ou X, Huo J, Lim K, Huang Y, Chee S, et al. Mir-17-92 regulates bone marrow homing of plasma cells and production of immunoglobulin G2c. Nat Commun. 2015;6:6764.

    Article  CAS  PubMed  Google Scholar 

  47. Mihailovich M, Bremang M, Spadotto V, Musiani D, Vitale E, Varano G, et al. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth. Nat Commun. 2015;6:8725.

    Article  CAS  PubMed  Google Scholar 

  48. Psathas JN, Doonan PJ, Raman P, Freedman BD, Minn AJ, Thomas-Tikhonenko A. The Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop. Blood. 2013;122:4220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS ONE. 2012;7:e29275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Teng Y, Mei Y, Hawthorn L, Cowell JK. WASF3 regulates miR-200 inactivation by ZEB1 through suppression of KISS1 leading to increased invasiveness in breast cancer cells. Oncogene. 2014;33:203–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant CA076167 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K Cowell.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, T., Chong, Y., Qin, H. et al. The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-FGFR1 chimeric kinase. Oncogene 37, 1926–1938 (2018). https://doi.org/10.1038/s41388-017-0091-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-017-0091-1

This article is cited by

Search

Quick links