Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Parvalbumin interneuron mGlu5 receptors govern sex differences in prefrontal cortex physiology and binge drinking

Abstract

Despite established sex differences in the prevalence and presentation of psychiatric disorders, little is known about the cellular and synaptic mechanisms that guide these differences under basal conditions. The proper function of the prefrontal cortex (PFC) is essential for the top-down regulation of motivated behaviors. The activity of the PFC is tightly controlled by parvalbumin-expressing interneurons (PV-INs), a key subpopulation of fast-spiking GABAergic cells that regulate cortical excitability through direct innervations onto the perisomatic regions of nearby pyramidal cells. Recent rodent studies have identified notable sex differences in PV-IN activity and adaptations to experiences such as binge drinking. Here, we investigated the cellular and molecular mechanisms that underlie sex-specific regulation of PFC PV-IN function. Using whole-cell patch-clamp electrophysiology and selective pharmacology, we report that PV-INs from female mice are more excitable than those from males. Moreover, we find that mGlu1 and mGlu5 metabotropic glutamate receptors regulate cell excitability, excitatory drive, and endocannabinoid signaling at PFC PV-INs in a sex-dependent manner. Genetic deletion of mGlu5 receptors from PV-expressing cells abrogates all sex differences observed in PV-IN membrane and synaptic physiology. Lastly, we report that female, but not male, PV-mGlu5−/ mice exhibit decreased voluntary drinking on an intermittent access schedule, which could be related to changes in ethanol’s stimulant properties. Importantly, these studies identify mGlu1 and mGlu5 receptors as candidate signaling molecules involved in sex differences in PV-IN activity and behaviors relevant to alcohol use.

This is a preview of subscription content, access via your institution

Access options

Fig. 1: PV-INs from female mice are more excitable at baseline, and PV-INs from male mice are more responsive to mGlu1/5 receptor stimulation.
Fig. 2: mGlu1 and mGlu5 receptors sex-specifically regulate synaptic strength and endocannabinoid plasticity in PV-Ins.
Fig. 3: Cell type-specific genetic deletion of Grm5 abrogates sex differences in PV-IN membrane physiology.
Fig. 4: Cell-type specific genetic deletion of Grm5 abrogates sex differences in PV-IN synaptic physiology.
Fig. 5: Female but not male PV-mGlu5−/− mice display reduced binge drinking.

Similar content being viewed by others

References

  1. Gobinath AR, Choleris E, Galea LA. Sex, hormones, and genotype interact to influence psychiatric disease, treatment, and behavioral research. J Neurosci Res. 2017;95:50–64.

    Article  CAS  PubMed  Google Scholar 

  2. Riecher-Rössler A. Sex and gender differences in mental disorders. Lancet Psychiatry. 2017;4:8–9.

    Article  PubMed  Google Scholar 

  3. Marcus SM, Kerber KB, Rush AJ, Wisniewski SR, Nierenberg A, Balasubramani GK, et al. Sex differences in depression symptoms in treatment-seeking adults: confirmatory analyses from the sequenced treatment alternatives to relieve depression study. Compr Psychiatry. 2008;49:238–46.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schuch JJ, Roest AM, Nolen WA, Penninx BW, de Jonge P. Gender differences in major depressive disorder: results from the Netherlands study of depression and anxiety. J Affect Disord. 2014;156:156–63.

    Article  PubMed  Google Scholar 

  5. Häfner H, Maurer K, Löffler W, Riecher-Rössler A. The influence of age and sex on the onset and early course of schizophrenia. Br J Psychiatry. 1993;162:80–6.

    Article  PubMed  Google Scholar 

  6. Ochoa S, Usall J, Cobo J, Labad X, Kulkarni J. Gender differences in schizophrenia and first-episode psychosis: a comprehensive literature review. Schizophr Res Treat. 2012;2012:916198.

    Google Scholar 

  7. Goldstein JM, Link BG. Gender and the expression of schizophrenia. J Psychiatr Res. 1988;22:141–55.

    Article  CAS  PubMed  Google Scholar 

  8. Randall CL, Roberts JS, Del Boca FK, Carroll KM, Connors GJ, Mattson ME. Telescoping of landmark events associated with drinking: a gender comparison. J Stud Alcohol. 1999;60:252–60.

    Article  CAS  PubMed  Google Scholar 

  9. Diehl A, Croissant B, Batra A, Mundle G, Nakovics H, Mann K. Alcoholism in women: is it different in onset and outcome compared to men? Eur Arch Psychiatry Clin Neurosci. 2007;257:344–51.

    Article  PubMed  Google Scholar 

  10. Kouneiher F, Charron S, Koechlin E. Motivation and cognitive control in the human prefrontal cortex. Nat Neurosci. 2009;12:939–45.

    Article  CAS  PubMed  Google Scholar 

  11. Schlaepfer TE, Harris GJ, Tien AY, Peng L, Lee S, Pearlson GD. Structural differences in the cerebral cortex of healthy female and male subjects: a magnetic resonance imaging study. Psychiatry Res. 1995;61:129–35.

    Article  CAS  PubMed  Google Scholar 

  12. Gur RC, Turetsky BI, Matsui M, Yan M, Bilker W, Hughett P, et al. Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. J Neurosci. 1999;19:4065–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldstein JM, Seidman LJ, Horton NJ, Makris N, Kennedy DN, Caviness VS Jr, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex. 2001;11:490–7.

    Article  CAS  PubMed  Google Scholar 

  14. Knouse MC, McGrath AG, Deutschmann AU, Rich MT, Zallar LJ, Rajadhyaksha AM, et al. Sex differences in the medial prefrontal cortical glutamate system. Biol Sex Differ. 2022;13:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gabbott PL, Warner TA, Jays PR, Salway P, Busby SJ. Prefrontal cortex in the rat: projections to subcortical autonomic, motor, and limbic centers. J Comp Neurol. 2005;492:145–77.

    Article  PubMed  Google Scholar 

  16. Sesack SR, Deutch AY, Roth RH, Bunney BS. Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol. 1989;290:213–42.

    Article  CAS  PubMed  Google Scholar 

  17. Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56:33–42.

    Article  CAS  PubMed  Google Scholar 

  18. Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci. 2022;14:936911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marin O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13:107–20.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson BR, Gao WJ. PV interneurons: critical regulators of E/I balance for prefrontal cortex-dependent behavior and psychiatric disorders. Front Neural Circuits. 2018;12:37.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chung DW, Fish KN, Lewis DA. Pathological basis for deficient excitatory drive to cortical parvalbumin interneurons in schizophrenia. Am J Psychiatry. 2016;173:1131–39.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Perlman G, Tanti A, Mechawar N. Parvalbumin interneuron alterations in stress-related mood disorders: a systematic review. Neurobiol Stress. 2021;15:100380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du X, Serena K, Hwang WJ, Grech AM, Wu YWC, Schroeder A, et al. Prefrontal cortical parvalbumin and somatostatin expression and cell density increase during adolescence and are modified by BDNF and sex. Mol Cell Neurosci. 2018;88:177–88.

    Article  CAS  PubMed  Google Scholar 

  25. Goodwill HL, Manzano-Nieves G, LaChance P, Teramoto S, Lin S, Lopez C, et al. Early life stress drives sex-selective impairment in reversal learning by affecting parvalbumin interneurons in orbitofrontal cortex of mice. Cell Rep. 2018;25:2299–307.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holland FH, Ganguly P, Potter DN, Chartoff EH, Brenhouse HC. Early life stress disrupts social behavior and prefrontal cortex parvalbumin interneurons at an earlier time-point in females than in males. Neurosci Lett. 2014;566:131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Page CE, Shepard R, Heslin K, Coutellier L. Prefrontal parvalbumin cells are sensitive to stress and mediate anxiety-related behaviors in female mice. Sci Rep. 2019;9:19772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joffe ME, Winder DG, Conn PJ. Contrasting sex-dependent adaptations to synaptic physiology and membrane properties of prefrontal cortex interneuron subtypes in a mouse model of binge drinking. Neuropharmacology. 2020;178:108126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, et al. mGlu(1) potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep. 2021;37:109950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trantham-Davidson H, Burnett EJ, Gass JT, Lopez MF, Mulholland PJ, Centanni SW, et al. Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex. J Neurosci. 2014;34:3706–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barnes SA, Pinto-Duarte A, Kappe A, Zembrzycki A, Metzler A, Mukamel EA, et al. Disruption of mGluR5 in parvalbumin-positive interneurons induces core features of neurodevelopmental disorders. Mol Psychiatry. 2015;20:1161–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joffe M, Maksymetz J, Luschinger J, Dogra S, Ferranti A, Luessen D, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu5 receptor plasticity on somatostatin-expressing interneurons. Neuron. 2022;110:1068–1083.e5.

  33. Joffe ME, Centanni SW, Jaramillo AA, Winder DG, Conn PJ. Metabotropic glutamate receptors in alcohol use disorder: physiology, plasticity, and promising pharmacotherapies. ACS Chem Neurosci. 2018;9:2188–204.

    Article  CAS  PubMed  Google Scholar 

  34. Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharm Toxicol. 2010;50:295–322.

    Article  CAS  Google Scholar 

  35. Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharm Toxicol. 1997;37:205–37.

    Article  CAS  Google Scholar 

  36. Fabian CB, Seney ML, Joffe ME. Sex differences and hormonal regulation of metabotropic glutamate receptor synaptic plasticity. Int Rev Neurobiol. 2023;168:311–47.

    Article  CAS  PubMed  Google Scholar 

  37. Tabatadze N, Huang G, May RM, Jain A, Woolley CS. Sex Differences in molecular signaling at inhibitory synapses in the hippocampus. J Neurosci. 2015;35:11252–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang GZ, Woolley CS. Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron. 2012;74:801–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 2005;3:e159.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaiser T, Ting JT, Monteiro P, Feng G. Transgenic labeling of parvalbumin-expressing neurons with tdTomato. Neuroscience. 2016;321:236–45.

    Article  CAS  PubMed  Google Scholar 

  41. Xu J, Zhu Y, Contractor A, Heinemann SF. mGluR5 has a critical role in inhibitory learning. J Neurosci. 2009;29:3676–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Straiker A, Mackie K. Depolarization-induced suppression of excitation in murine autaptic hippocampal neurones. J Physiol. 2005;569:501–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, et al. Endocannabinoid signaling collapse mediates stress-induced amygdalo-cortical strengthening. Neuron. 2020;105:1062–76.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, Niswender CM, et al. mGlu1 potentiation enhances cortical somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep. 2021;37:109950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thompson SM, Fabian CB, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. Neuropharmacology. 2023;238:109638.

    Article  CAS  PubMed  Google Scholar 

  46. Mannaioni G, Marino MJ, Valenti O, Traynelis SF, Conn PJ. Metabotropic glutamate receptors 1 and 5 differentially regulate CA1 pyramidal cell function. J Neurosci. 2001;21:5925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Di Menna L, Joffe ME, Iacovelli L, Orlando R, Lindsley CW, Mairesse J, et al. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology. 2018;128:301–13.

    Article  PubMed  Google Scholar 

  48. Gereau RWt, Conn PJ. Roles of specific metabotropic glutamate receptor subtypes in regulation of hippocampal CA1 pyramidal cell excitability. J Neurophysiol. 1995;74:122–9.

    Article  Google Scholar 

  49. Wu S, Wright RA, Rockey PK, Burgett SG, Arnold JS, Rosteck PR Jr., et al. Group III human metabotropic glutamate receptors 4, 7 and 8: molecular cloning, functional expression, and comparison of pharmacological properties in RGT cells. Brain Res Mol Brain Res. 1998;53:88–97.

    Article  CAS  PubMed  Google Scholar 

  50. Ferranti AS, Johnson KA, Winder DG, Conn PJ, Joffe ME. Prefrontal cortex parvalbumin interneurons exhibit decreased excitability and potentiated synaptic strength after ethanol reward learning. Alcohol. 2022;101:17–26.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807.

    Article  CAS  PubMed  Google Scholar 

  52. Kawaguchi Y, Kubota Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex. 1997;7:476–86.

    Article  CAS  PubMed  Google Scholar 

  53. Maksymetz J, Byun NE, Luessen DJ, Li B, Barry RL, Gore JC, et al. mGlu1 potentiation enhances prelimbic somatostatin interneuron activity to rescue schizophrenia-like physiological and cognitive deficits. Cell Rep. 2021;37:109950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chu Z, Hablitz JJ. Activation of group I mGluRs increases spontaneous IPSC frequency in rat frontal cortex. J Neurophysiol. 1998;80:621–7.

    Article  CAS  PubMed  Google Scholar 

  55. Whittington MA, Traub RD, Jefferys JG. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373:612–5.

    Article  CAS  PubMed  Google Scholar 

  56. Marek GJ, Zhang C. Activation of metabotropic glutamate 5 (mGlu5) receptors induces spontaneous excitatory synaptic currents in layer V pyramidal cells of the rat prefrontal cortex. Neurosci Lett. 2008;442:239–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Maejima T, Hashimoto K, Yoshida T, Aiba A, Kano M. Presynaptic inhibition caused by retrograde signal from metabotropic glutamate to cannabinoid receptors. Neuron. 2001;31:463–75.

    Article  CAS  PubMed  Google Scholar 

  58. Varma N, Carlson GC, Ledent C, Alger BE. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J Neurosci. 2001;21:Rc188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohno-Shosaku T, Shosaku J, Tsubokawa H, Kano M. Cooperative endocannabinoid production by neuronal depolarization and group I metabotropic glutamate receptor activation. Eur J Neurosci. 2002;15:953–61.

    Article  PubMed  Google Scholar 

  60. Robbe D, Kopf M, Remaury A, Bockaert J, Manzoni OJ. Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. Proc Natl Acad Sci USA. 2002;99:8384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo B, Wang J, Yao H, Ren K, Chen J, Yang J, et al. Corrigendum: chronic inflammatory pain impairs mGluR5-mediated depolarization-induced suppression of excitation in the anterior cingulate cortex. Cereb Cortex. 2019;29:1698.

    Article  PubMed  Google Scholar 

  62. Diana MA, Marty A. Endocannabinoid-mediated short-term synaptic plasticity: depolarization-induced suppression of inhibition (DSI) and depolarization-induced suppression of excitation (DSE). Br J Pharm. 2004;142:9–19.

    Article  CAS  Google Scholar 

  63. Kasten CR, Holmgren EB, Wills TA. Metabotropic glutamate receptor subtype 5 in alcohol-induced negative affect. Brain Sci. 2019;9:183.

  64. Jury NJ, DiBerto JF, Kash TL, Holmes A. Sex differences in the behavioral sequelae of chronic ethanol exposure. Alcohol. 2017;58:53–60.

    Article  CAS  PubMed  Google Scholar 

  65. Finn DA, Helms ML, Nipper MA, Cohen A, Jensen JP, Devaud LL. Sex differences in the synergistic effect of prior binge drinking and traumatic stress on subsequent ethanol intake and neurochemical responses in adult C57BL/6J mice. Alcohol. 2018;71:33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Becker HC, Lopez MF. Increased ethanol drinking after repeated chronic ethanol exposure and withdrawal experience in C57BL/6 mice. Alcohol Clin Exp Res. 2004;28:1829–38.

    Article  CAS  PubMed  Google Scholar 

  67. Clemens AM, Lenschow C, Beed P, Li L, Sammons R, Naumann RK, et al. Estrus-cycle regulation of cortical inhibition. Curr Biol. 2019;29:605–15 e6.

    Article  CAS  PubMed  Google Scholar 

  68. Saugstad JA, Marino MJ, Folk JA, Hepler JR, Conn PJ. RGS4 inhibits signaling by group I metabotropic glutamate receptors. J Neurosci. 1998;18:905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cannady R, McGonigal JT, Newsom RJ, Woodward JJ, Mulholland PJ, Gass JT. Prefrontal cortex KCa2 channels regulate mGlu5-dependent plasticity and extinction of alcohol-seeking behavior. J Neurosci. 2017;37:4359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim SJ, Kim YS, Yuan JP, Petralia RS, Worley PF, Linden DJ. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature. 2003;426:285–91.

    Article  CAS  PubMed  Google Scholar 

  71. Topolnik L, Azzi M, Morin F, Kougioumoutzakis A, Lacaille JC. mGluR1/5 subtype-specific calcium signalling and induction of long-term potentiation in rat hippocampal oriens/alveus interneurones. J Physiol. 2006;575:115–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Trabzuni D, Ramasamy A, Imran S, Walker R, Smith C, Weale ME, et al. Widespread sex differences in gene expression and splicing in the adult human brain. Nat Commun. 2013;4:2771.

    Article  PubMed  Google Scholar 

  73. Francesconi A, Duvoisin RM. Alternative splicing unmasks dendritic and axonal targeting signals in metabotropic glutamate receptor 1. J Neurosci. 2002;22:2196–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Naito R, Kassai H, Sakai Y, Schönherr S, Fukaya M, Schwarzer C, et al. New features on the expression and trafficking of mGluR1 splice variants exposed by two novel mutant mouse lines. Front Mol Neurosci. 2018;11:439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee J, Munguba H, Gutzeit VA, Singh DR, Kristt M, Dittman JS, et al. Defining the homo- and heterodimerization propensities of metabotropic glutamate receptors. Cell Rep. 2020;31:107605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Doumazane E, Scholler P, Zwier JM, Trinquet E, Rondard P, Pin JP. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J. 2011;25:66–77.

    Article  CAS  PubMed  Google Scholar 

  77. Notartomaso S, Nakao H, Mascio G, Scarselli P, Cannella M, Zappulla C, et al. mGlu1 receptors monopolize the synaptic control of cerebellar purkinje cells by epigenetically down-regulating mGlu5 receptors. Sci Rep. 2018;8:13361.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Sevastyanova TN, Kammermeier PJ. Cooperative signaling between homodimers of metabotropic glutamate receptors 1 and 5. Mol Pharm. 2014;86:492–504.

    Article  Google Scholar 

  79. Ferraro A, Wig P, Boscarino J, Reich CG. Sex differences in endocannabinoid modulation of rat CA1 dendritic neurotransmission. Neurobiol Stress. 2020;13:100283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rodríguez de Fonseca F, Cebeira M, Ramos JA, Martín M, Fernández-Ruiz JJ. Cannabinoid receptors in rat brain areas: sexual differences, fluctuations during estrous cycle and changes after gonadectomy and sex steroid replacement. Life Sci. 1994;54:159–70.

    Article  PubMed  Google Scholar 

  81. Bara A, Manduca A, Bernabeu A, Borsoi M, Serviado M, Lassalle O, et al. Sex-dependent effects of in utero cannabinoid exposure on cortical function. Elife. 2018;7:e36234.

  82. Bernabeu A, Bara A, Murphy Green MN, Manduca A, Wager-Miller J, Borsoi M, et al. Sexually dimorphic adolescent trajectories of prefrontal endocannabinoid synaptic plasticity equalize in adulthood, reflected by endocannabinoid system gene expression. Cannabis Cannabinoid Res. 2023;8:749–767.

  83. Backstrom P, Bachteler D, Koch S, Hyytia P, Spanagel R. mGluR5 antagonist MPEP reduces ethanol-seeking and relapse behavior. Neuropsychopharmacology. 2004;29:921–8.

    Article  PubMed  Google Scholar 

  84. Bird MK, Kirchhoff J, Djouma E, Lawrence AJ. Metabotropic glutamate 5 receptors regulate sensitivity to ethanol in mice. Int J Neuropsychopharmacol. 2008;11:765–74.

    Article  CAS  PubMed  Google Scholar 

  85. Stevenson RA, Hoffman JL, Maldonado-Devincci AM, Faccidomo S, Hodge CW. MGluR5 activity is required for the induction of ethanol behavioral sensitization and associated changes in ERK MAP kinase phosphorylation in the nucleus accumbens shell and lateral habenula. Behav Brain Res. 2019;367:19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW. Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry. 2010;67:812–22.

    Article  CAS  PubMed  Google Scholar 

  87. Besheer J, Faccidomo S, Grondin JJ, Hodge CW. Regulation of motivation to self-administer ethanol by mGluR5 in alcohol-preferring (P) rats. Alcohol Clin Exp Res. 2008;32:209–21.

    Article  CAS  PubMed  Google Scholar 

  88. Dao NC, Brockway DF, Suresh Nair M, Sicher AR, Crowley NA Somatostatin neurons control an alcohol binge drinking prelimbic microcircuit in mice. Neuropsychopharmacology. 2021.

  89. Dao NC, Suresh Nair M, Magee SN, Moyer JB, Sendao V, Brockway DF, et al. Forced abstinence from alcohol induces sex-specific depression-like behavioral and neural adaptations in somatostatin neurons in cortical and amygdalar regions. Front Behav Neurosci. 2020;14:86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sicher AR, Starnes WD, Griffith KR, Dao NC, Smith GC, Brockway DF, et al. Adolescent binge drinking leads to long-lasting changes in cortical microcircuits in mice. Neuropharmacology. 2023;234:109561.

    Article  CAS  PubMed  Google Scholar 

  91. Joffe ME, Maksymetz J, Luschinger JR, Dogra S, Ferranti AS, Luessen DJ, et al. Acute restraint stress redirects prefrontal cortex circuit function through mGlu(5) receptor plasticity on somatostatin-expressing interneurons. Neuron. 2022;110:1068–83.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Blurton-Jones M, Tuszynski MH. Estrogen receptor-beta colocalizes extensively with parvalbumin-labeled inhibitory neurons in the cortex, amygdala, basal forebrain, and hippocampal formation of intact and ovariectomized adult rats. J Comp Neurol. 2002;452:276–87.

    Article  PubMed  Google Scholar 

  93. Gross KS, Moore KM, Meisel RL, Mermelstein PG. mGluR5 mediates dihydrotestosterone-induced nucleus accumbens structural plasticity, but not conditioned reward. Front Neurosci. 2018;12:855.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fagan MP, Ameroso D, Meng A, Rock A, Maguire J, Rios M. Essential and sex-specific effects of mGluR5 in ventromedial hypothalamus regulating estrogen signaling and glucose balance. Proc Natl Acad Sci USA. 2020;117:19566–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Vandegrift BJ, Hilderbrand ER, Satta R, Tai R, He D, You C, et al. Estrogen receptor alpha regulates ethanol excitation of ventral tegmental area neurons and binge drinking in female mice. J Neurosci. 2020;40:5196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Maguire JL, Stell BM, Rafizadeh M, Mody I. Ovarian cycle-linked changes in GABA(A) receptors mediating tonic inhibition alter seizure susceptibility and anxiety. Nat Neurosci. 2005;8:797–804.

    Article  CAS  PubMed  Google Scholar 

  97. Maguire J, Mody I. Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci. 2007;27:2155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Abramian AM, Comenencia-Ortiz E, Modgil A, Vien TN, Nakamura Y, Moore YE, et al. Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors. Proc Natl Acad Sci USA. 2014;111:7132–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Conde K, Fabelo C, Krause WC, Propst R, Goethel J, Fischer D, et al. Testosterone rapidly augments retrograde endocannabinoid signaling in proopiomelanocortin neurons to suppress glutamatergic input from steroidogenic factor 1 neurons via upregulation of diacylglycerol lipase-alpha. Neuroendocrinology. 2017;105:341–56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the University of Pittsburgh Department of Psychiatry and Translational Neuroscience Program for stimulating discussions.

Funding

This work was supported by the National Institutes of Health [grant numbers R00AA027806 and R01MH120066], the Whitehall Foundation [grant number 2022-08-005], and the Brain and Behavior Research Foundation. CBF and RHC were supported by the Center for Neuroscience at the University of Pittsburgh. CBF was supported by an institutional predoctoral fellowship from the National Institutes of Health [grant number T32NS07433]. NDJ was supported by the Center for Neuroscience at the University of Pittsburgh Summer Undergraduate Research Program.

Author information

Authors and Affiliations

Authors

Contributions

CBF: conceptualization, investigation, writing original draft, and visualization; NDJ: investigation; RHC: investigation; LGC: investigation; SMT: investigation and project administration; MLS: conceptualization and writing review and editing; and MEJ: conceptualization, investigation, writing-review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Max E. Joffe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fabian, C.B., Jordan, N.D., Cole, R.H. et al. Parvalbumin interneuron mGlu5 receptors govern sex differences in prefrontal cortex physiology and binge drinking. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01889-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01889-0

Search

Quick links