Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulant medications in children with ADHD normalize the structure of brain regions associated with attention and reward

Abstract

Children with ADHD show abnormal brain function and structure. Neuroimaging studies found that stimulant medications may improve brain structural abnormalities in children with ADHD. However, prior studies on this topic were conducted with relatively small sample sizes and wide age ranges and showed inconsistent results. In this cross-sectional study, we employed latent class analysis and linear mixed-effects models to estimate the impact of stimulant medications using demographic, clinical measures, and brain structure in a large and diverse sample of children aged 9-11 from the Adolescent Brain and Cognitive Development Study. We studied 273 children with low ADHD symptoms and received stimulant medication (Stim Low-ADHD), 1002 children with high ADHD symptoms and received no medications (No-Med ADHD), and 5378 typically developing controls (TDC). After controlling for the covariates, compared to Stim Low-ADHD and TDC, No-Med ADHD showed lower cortical thickness in the right insula (INS, d = 0.340, PFDR = 0.003) and subcortical volume in the left nucleus accumbens (NAc, d = 0.371, PFDR = 0.003), indicating that high ADHD symptoms were associated with structural abnormalities in these brain regions. In addition, there was no difference in brain structural measures between Stim Low-ADHD and TDC children, suggesting that the stimulant effects improved both ADHD symptoms and ADHD-associated brain structural abnormalities. These findings together suggested that children with ADHD appear to have structural abnormalities in brain regions associated with saliency and reward processing, and treatment with stimulant medications not only improve the ADHD symptoms but also normalized these brain structural abnormalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conditional probabilities are based on ADHD symptoms and statistics on ADHD medication in each latent class.
Fig. 2: One-way ANOVA analysis and post-hoc test.

Similar content being viewed by others

References

  1. Cortese S, Coghill D. Twenty years of research on attention-deficit/hyperactivity disorder (ADHD): looking back, looking forward. Evid Based Ment Health. 2018;21:173–76.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ros R, Graziano PA. Social functioning in children with or at risk for attention deficit/hyperactivity disorder: a meta-analytic review. J Clin Child Adolesc Psychol. 2018;47:213–35.

    Article  PubMed  Google Scholar 

  3. Groenman AP, Janssen TWP, Oosterlaan J. Childhood psychiatric disorders as risk factor for subsequent substance abuse: a meta-analysis. J Am Acad Child Adolesc Psychiatry. 2017;56:556–69.

    Article  PubMed  Google Scholar 

  4. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of parent-reported ADHD diagnosis and associated treatment among U.S. children and adolescents, 2016. J Clin Child Adolesc Psychol. 2018;47:199–212.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Volkow ND. Long-term safety of stimulant use for ADHD: findings from nonhuman primates. Neuropsychopharmacology. 2012;37:2551–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Volkow ND, Swanson JM. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry. 2003;160:1909–18.

    Article  PubMed  Google Scholar 

  7. Faraone SV. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci Biobehav Rev. 2018;87:255–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolraich ML, Hagan JF Jr, Allan C, Chan E, Davison D, Earls M, et al. Clinical practice guideline for the diagnosis, evaluation, and treatment of attention-deficit/hyperactivity disorder in children and adolescents. Pediatrics. 2019;144:e20192528.

    Article  PubMed  Google Scholar 

  9. Faraone SV, Buitelaar J. Comparing the efficacy of stimulants for ADHD in children and adolescents using meta-analysis. Eur Child Adolesc Psychiatry. 2010;19:353–64.

    Article  PubMed  Google Scholar 

  10. Lopez-Larson MP, King JB, Terry J, McGlade EC, Yurgelun-Todd D. Reduced insular volume in attention deficit hyperactivity disorder. Psychiatry Res. 2012;204:32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, et al. Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry. 2006;60:1071–80.

    Article  PubMed  Google Scholar 

  12. Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, et al. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis. Lancet Psychiatry. 2017;4:310–19.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, et al. Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA. 2007;104:19649–54.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sobel LJ, Bansal R, Maia TV, Sanchez J, Mazzone L, Durkin K, et al. Basal ganglia surface morphology and the effects of stimulant medications in youth with attention deficit hyperactivity disorder. Am J Psychiatry. 2010;167:977–86.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Villemonteix T, De Brito SA, Kavec M, Baleriaux D, Metens T, Slama H, et al. Grey matter volumes in treatment naive vs. chronically treated children with attention deficit/hyperactivity disorder: a combined approach. Eur Neuropsychopharmacol. 2015;25:1118–27.

    Article  CAS  PubMed  Google Scholar 

  16. Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naive children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65:620–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ivanov I, Bansal R, Hao X, Zhu H, Kellendonk C, Miller L, et al. Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am J Psychiatry. 2010;167:397–408.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoekzema E, Carmona S, Ramos-Quiroga JA, Canals C, Moreno A, Richarte Fernández V, et al. Stimulant drugs trigger transient volumetric changes in the human ventral striatum. Brain Struct Funct. 2014;219:23–34.

    Article  PubMed  Google Scholar 

  19. Semrud-Clikeman M, Pliszka SR, Lancaster J, Liotti M. Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology. 2006;67:1023–7.

    Article  PubMed  Google Scholar 

  20. Pretus C, Ramos-Quiroga JA, Richarte V, Corrales M, Picado M, Carmona S, et al. Time and psychostimulants: Opposing long-term structural effects in the adult ADHD brain. A longitudinal MR study. Eur Neuropsychopharmacol. 2017;27:1238–47.

    Article  CAS  PubMed  Google Scholar 

  21. Shaw P, Sharp WS, Morrison M, Eckstrand K, Greenstein DK, Clasen LS, et al. Psychostimulant treatment and the developing cortex in attention deficit hyperactivity disorder. Am J Psychiatry. 2009;166:58–63.

    Article  PubMed  Google Scholar 

  22. Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002;288:1740–8.

    Article  PubMed  Google Scholar 

  23. Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva JC, Rovira M, et al. Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett. 2005;389:88–93.

    Article  CAS  PubMed  Google Scholar 

  24. Batty MJ, Liddle EB, Pitiot A, Toro R, Groom MJ, Scerif G, et al. Cortical gray matter in attention-deficit/hyperactivity disorder: a structural magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry. 2010;49:229–38.

    PubMed  PubMed Central  Google Scholar 

  25. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–76.

    Article  CAS  PubMed  Google Scholar 

  26. Hoogman M, Muetzel R, Guimaraes JP, Shumskaya E, Mennes M, Zwiers MP, et al. Brain imaging of the cortex in ADHD: A coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry. 2019;176:531–42.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paus T. Mapping brain maturation and cognitive development during adolescence. Trends Cogn Sci. 2005;9:60–8.

    Article  PubMed  Google Scholar 

  28. Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol. 2017;44:122–37.

    Article  PubMed  Google Scholar 

  29. Shaw P, Malek M, Watson B, Sharp W, Evans A, Greenstein D. Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;72:191–7.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Elia J, Arcos-Burgos M, Bolton KL, Ambrosini PJ, Berrettini W, Muenke M. ADHD latent class clusters: DSM-IV subtypes and comorbidity. Psychiatry Res. 2009;170:192–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kongsted A, Nielsen AM. Latent Class Analysis in Health Research. J Physiother. 2017;63:55–58.

    Article  PubMed  Google Scholar 

  32. Lubke GH, Muthen B. Investigating population heterogeneity with factor mixture models. Psychol Methods. 2005;10:21–39.

    Article  PubMed  Google Scholar 

  33. Dalmartello M, Decarli A, Ferraroni M, Bravi F, Serraino D, Garavello W, et al. Dietary patterns and oral and pharyngeal cancer using latent class analysis. Int J Cancer. 2020;147:719–27.

    Article  CAS  PubMed  Google Scholar 

  34. Rasmussen ER, Neuman RJ, Heath AC, Levy F, Hay DA, Todd RD. Familial clustering of latent class and DSM-IV defined attention-deficit/hyperactivity disorder (ADHD) subtypes. J Child Psychol Psychiatry. 2004;45:589–98.

    Article  PubMed  Google Scholar 

  35. Althoff RR, Copeland WE, Stanger C, Derks EM, Todd RD, Neuman RJ, et al. The latent class structure of ADHD is stable across informants. Twin Res Hum Genet. 2006;9:507–22.

    Article  PubMed  Google Scholar 

  36. Volk HE, Henderson C, Neuman RJ, Todd RD. Validation of population-based ADHD subtypes and identification of three clinically impaired subtypes. Am J Med Genet B Neuropsychiatr Genet. 2006;141B:312–8.

    Article  PubMed  Google Scholar 

  37. Hagler DJ Jr, Hatton S, Cornejo MD, Makowski C, Fair DA, Dick AS, et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage. 2019;202:116091.

    Article  CAS  PubMed  Google Scholar 

  38. Elia J, Ambrosini P, Berrettini W. ADHD characteristics: I. Concurrent co-morbidity patterns in children & adolescents. Child Adolesc Psychiatry Ment Health. 2008;2:15.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, et al. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33:341–55.

    Article  CAS  PubMed  Google Scholar 

  41. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–80.

    Article  PubMed  Google Scholar 

  42. Shahrivar Z, Kousha M, Moallemi S, Tehrani-Doost M, Alaghband-Rad J. The reliability and validity of kiddie-schedule for affective disorders and schizophrenia - present and life-time version - Persian Version. Child Adolesc Ment Health. 2010;15:97–102.

    Article  PubMed  Google Scholar 

  43. Kaufman J, Birmaher B, Brent D, Rao U, Flynn C, Moreci P, et al. Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry. 1997;36:980–8.

    Article  CAS  PubMed  Google Scholar 

  44. Pedersen ML, Jozefiak T, Sund AM, Holen S, Neumer SP, Martinsen KD, et al. Psychometric properties of the Brief Problem Monitor (BPM) in children with internalizing symptoms: examining baseline data from a national randomized controlled intervention study. BMC Psychol. 2021;9:185.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tomasi D, Volkow ND. Associations of family income with cognition and brain structure in USA children: prevention implications. Mol Psychiatry. 2021;26:6619–29.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Goodman LA. Explanatory latent structure analysis using both identifiable and unidentifiable models. Biometrika. 1974;61:215–31.

    Article  MathSciNet  Google Scholar 

  47. Lanza ST, Collins LM, Lemmon DR, Schafer JL. PROC LCA: A SAS procedure for latent class analysis. Struct Equ Model. 2007;14:671–94.

    Article  MathSciNet  Google Scholar 

  48. Nylund KL, Asparoutiov T, Muthen BO. Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Struct Equ Model Multidiscip J. 2007;14:535–69.

    Article  MathSciNet  Google Scholar 

  49. Lichenstein SD, Roos C, Kohler R, Kiluk B, Carroll KM, Worhunsky PD, et al. Identification and validation of distinct latent neurodevelopmental profiles in the adolescent brain and cognitive development study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2022;7:352–61.

    PubMed  Google Scholar 

  50. Celeux GSG. An Entropy criterion for assessing the number of clusters in a mixture model. J Classif. 1996;13:195–212.

    Article  MathSciNet  Google Scholar 

  51. Muthén LKaM, B.O. Mplus User’s Guide. Eighth Edition ed.; (1998-2017).

  52. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:e26790.

    Article  Google Scholar 

  53. Barnes J, Ridgway GR, Bartlett J, Henley SM, Lehmann M, Hobbs N, et al. Head size, age and gender adjustment in MRI studies: a necessary nuisance? Neuroimage. 2010;53:1244–55.

    Article  PubMed  Google Scholar 

  54. Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P, Engvig A, et al. Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. Neuroimage. 2010;52:172–85.

    Article  PubMed  Google Scholar 

  55. Isaiah A, Ernst T, Cloak CC, Clark DB, Chang L. Association between habitual snoring and cognitive performance among a large sample of preadolescent children. JAMA Otolaryngol Head Neck Surg. 2021;147:426–33.

    Article  PubMed  Google Scholar 

  56. Dworkin J, Bernanke J, Luna A, Chang L, Bruno E, Dworkin J, et al. Structural brain measures among children with and without ADHD in the Adolescent Brain and Cognitive Development Study cohort: a cross-sectional US population-based study. Lancet Psychiatry. 2022;9:222–31.

    Article  PubMed  Google Scholar 

  57. Vandekar S, Tao R, Blume J. A robust effect size index. Psychometrika. 2020;85:232–46.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  58. Cohen J. Statistical power analysis for the behavioral sciences. Technometrics 1988;31:499–500.

    Google Scholar 

  59. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson JS, Ferguson MA, Lopez-Larson M, Yurgelun-Todd D. Connectivity gradients between the default mode and attention control networks. Brain Connect. 2011;1:147–57.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Huang Z, Tarnal V, Vlisides PE, Janke EL, McKinney AM, Picton P, et al. Anterior insula regulates brain network transitions that gate conscious access. Cell Rep. 2021;35:109081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA. 2008;105:12569–74.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Norman LJ, Carlisi C, Lukito S, Hart H, Mataix-Cols D, Radua J, et al. Structural and functional brain abnormalities in attention-deficit/hyperactivity disorder and obsessive-compulsive disorder: a comparative meta-analysis. JAMA Psychiatry. 2016;73:815–25.

    Article  PubMed  Google Scholar 

  65. Tomasi D, Volkow ND. Abnormal functional connectivity in children with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2012;71:443–50.

    Article  PubMed  Google Scholar 

  66. Tomasi D, Volkow ND. Functional connectivity of substantia nigra and ventral tegmental area: maturation during adolescence and effects of ADHD. Cereb Cortex. 2014;24:935–44.

    Article  PubMed  Google Scholar 

  67. Ibanez A, Gleichgerrcht E, Manes F. Clinical effects of insular damage in humans. Brain Struct Funct. 2010;214:397–410.

    Article  PubMed  Google Scholar 

  68. Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012;37:17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;15:483–506.

    Article  PubMed  Google Scholar 

  70. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci. 2008;28:3586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nicola SM, Yun IA, Wakabayashi KT, Fields HL. Firing of nucleus accumbens neurons during the consummatory phase of a discriminative stimulus task depends on previous reward predictive cues. J Neurophysiol. 2004;91:1866–82.

    Article  PubMed  Google Scholar 

  72. Roitman MF, Wheeler RA, Carelli RM. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron. 2005;45:587–97.

    Article  CAS  PubMed  Google Scholar 

  73. Wright KN, Wesson DW. The tubular striatum and nucleus accumbens distinctly represent reward-taking and reward-seeking. J Neurophysiol. 2021;125:166–83.

    Article  PubMed  Google Scholar 

  74. Bailey MR, Simpson EH, Balsam PD. Neural substrates underlying effort, time, and risk-based decision making in motivated behavior. Neurobiol Learn Mem. 2016;133:233–56.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Soares-Cunha C, Coimbra B, Domingues AV, Vasconcelos N, Sousa N, Rodrigues AJ. Nucleus accumbens microcircuit underlying D2-MSN-driven increase in motivation. eNeuro. 2018;5:e0386–18.2018.

  76. Volkow ND, Wang GJ, Kollins SH, Wigal TL, Newcorn JH, Telang F, et al. Evaluating dopamine reward pathway in ADHD: clinical implications. JAMA. 2009;302:1084–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sonuga-Barke EJ. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev. 2003;27:593–604.

    Article  PubMed  Google Scholar 

  78. Sagvolden T, Johansen EB, Aase H, Russell VA. A dynamic developmental theory of attention-deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005;28:397–419.

    Article  PubMed  Google Scholar 

  79. Luman M, Oosterlaan J, Sergeant JA. The impact of reinforcement contingencies on AD/HD: a review and theoretical appraisal. Clin Psychol Rev. 2005;25:183–213.

    Article  PubMed  Google Scholar 

  80. Plichta MM, Vasic N, Wolf RC, Lesch KP, Brummer D, Jacob C, et al. Neural hyporesponsiveness and hyperresponsiveness during immediate and delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol Psychiatry. 2009;65:7–14.

    Article  PubMed  Google Scholar 

  81. Strohle A, Stoy M, Wrase J, Schwarzer S, Schlagenhauf F, Huss M, et al. Reward anticipation and outcomes in adult males with attention-deficit/hyperactivity disorder. Neuroimage. 2008;39:966–72.

    Article  PubMed  Google Scholar 

  82. Scheres A, Milham MP, Knutson B, Castellanos FX. Ventral striatal hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61:720–4.

    Article  PubMed  Google Scholar 

  83. Volkow ND, Wang GJ, Fowler JS, Ding YS. Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57:1410–5.

    Article  CAS  PubMed  Google Scholar 

  84. Ip NY, Yancopoulos GD. Neurotrophic factors and their receptors. Ann Neurol. 1994;35:S13–6.

    Article  CAS  PubMed  Google Scholar 

  85. Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Lee HJ, et al. Increased levels of plasma brain-derived neurotrophic factor (BDNF) in children with attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1824–8.

    Article  CAS  PubMed  Google Scholar 

  86. Fumagalli F, Cattaneo A, Caffino L, Ibba M, Racagni G, Carboni E, et al. Sub-chronic exposure to atomoxetine up-regulates BDNF expression and signalling in the brain of adolescent spontaneously hypertensive rats: comparison with methylphenidate. Pharm Res. 2010;62:523–9.

    Article  CAS  Google Scholar 

  87. Amiri A, Torabi Parizi G, Kousha M, Saadat F, Modabbernia MJ, Najafi K, et al. Changes in plasma Brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with Attention deficit-hyperactivity disorder (ADHD). Prog Neuropsychopharmacol Biol Psychiatry. 2013;47:20–4.

    Article  CAS  PubMed  Google Scholar 

  88. Bayassi-Jakowicka M, Lietzau G, Czuba E, Patrone C, Kowianski P. More than addiction-the nucleus accumbens contribution to development of mental disorders and neurodegenerative diseases. Int J Mol Sci. 2022;23:2618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Volkow ND, Wang GJ, Tomasi D, Kollins SH, Wigal TL, Newcorn JH, et al. Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci. 2012;32:841–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Churchwell JC, Carey PD, Ferrett HL, Stein DJ, Yurgelun-Todd DA. Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Dev Neurosci. 2012;34:310–7.

    Article  CAS  PubMed  Google Scholar 

  91. Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, et al. Chronic methamphetamine effects on brain structure and function in rats. PLoS One. 2016;11:e0155457.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Jernigan TL, Gamst AC, Archibald SL, Fennema-Notestine C, Mindt MR, Marcotte TD, et al. Effects of methamphetamine dependence and HIV infection on cerebral morphology. Am J Psychiatry. 2005;162:1461–72.

    Article  PubMed  Google Scholar 

  93. Jan RK, Lin JC, Miles SW, Kydd RR, Russell BR. Striatal volume increases in active methamphetamine-dependent individuals and correlation with cognitive performance. Brain Sci. 2012;2:553–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chang L, Alicata D, Ernst T, Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction. 2007;102:16–32.

    Article  PubMed  Google Scholar 

  95. Ramaekers JG, Evers EA, Theunissen EL, Kuypers KP, Goulas A, Stiers P. Methylphenidate reduces functional connectivity of nucleus accumbens in brain reward circuit. Psychopharmacol (Berl). 2013;229:219–26.

    Article  CAS  Google Scholar 

  96. Wang J, Li G, Ji G, Hu Y, Zhang W, Ji W, et al. Habenula volume and functional connectivity changes following laparoscopic sleeve gastrectomy for obesity treatment. Biol Psychiatry. 2023;S0006-3223:01432–4.

    Google Scholar 

  97. Wang Y, Ji G, Hu Y, Li G, Ding Y, Hu C, et al. Laparoscopic sleeve gastrectomy induces sustained changes in gray and white matter brain volumes and resting functional connectivity in obese patients. Surg Obes Relat Dis. 2020;16:1–9.

    Article  CAS  PubMed  Google Scholar 

  98. Ivanov I, Murrough JW, Bansal R, Hao X, Peterson BS. Cerebellar morphology and the effects of stimulant medications in youths with attention deficit-hyperactivity disorder. Neuropsychopharmacology. 2014;39:718–26.

    Article  PubMed  Google Scholar 

  99. Fotopoulos NH, Devenyi GA, Guay S, Sengupta SM, Chakravarty MM, Grizenko N, et al. Cumulative exposure to ADHD medication is inversely related to hippocampus subregional volume in children. Neuroimage Clin. 2021;31:102695.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14:277–90.

    Article  PubMed  Google Scholar 

  101. Nakao T, Radua J, Rubia K, Mataix-Cols D. Gray matter volume abnormalities in ADHD: voxel-based meta-analysis exploring the effects of age and stimulant medication. Am J Psychiatry. 2011;168:1154–63.

    Article  PubMed  Google Scholar 

  102. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26.

    Article  CAS  PubMed  Google Scholar 

  103. Shaw P, De Rossi P, Watson B, Wharton A, Greenstein D, Raznahan A, et al. Mapping the development of the basal ganglia in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2014;53:780–9.e11.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Onnink AM, Zwiers MP, Hoogman M, Mostert JC, Kan CC, Buitelaar J, et al. Brain alterations in adult ADHD: effects of gender, treatment and comorbid depression. Eur Neuropsychopharmacol. 2014;24:397–409.

    Article  CAS  PubMed  Google Scholar 

  105. Bush G, Holmes J, Shin LM, Surman C, Makris N, Mick E, et al. Atomoxetine increases fronto-parietal functional MRI activation in attention-deficit/hyperactivity disorder: a pilot study. Psychiatry Res. 2013;211:88–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

Data used in the preparation of this article were obtained from the Adolescent Brain Cognitive Development (ABCD) Study (https://abcdstudy.org), held in the National Institute of Mental Health (NIMH) Data Archive (NDA). The ABCD Study is supported by the National Institutes of Health and additional federal partners under award numbers U01DA041022, U01DA041028, U01DA041048, U01DA041089, U01DA041106, U01DA041117, U01DA041120, U01DA041134, U01DA041148, U01DA041156, U01DA041174, U24DA041123, and U24DA041147. A full list of supporters is available at https://abcdstudy.org/nih-collaborators. A listing of participating sites and a complete listing of the study investigators can be found at https://abcdstudy.org/ principal-investigators.html. ABCD consortium investigators designed and implemented the study and/or provided data but did not necessarily participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the National Institutes of Health (NIH) or ABCD consortium investigators. The ABCD data repository grows and changes over time. The ABCD data used in this report came from NIMH Data Archive Digital Object Identifier (https://doi.org/10.15154/1519007). This work was supported by the National Natural Science Foundation of China (grant number 82172023, 82202252, 82302292); National Key R&D Program of China (No.2022YFC3500603); the Fundamental Research Funds for the Central Universities (ZYTS23188; XJSJ23190; XJS221201; QTZX23093); Natural Science Basic Research Program of Shaanxi (grant number 2022JC-44, 2022JQ-622, 2023-JC-QN−0922, 2023-ZDLSF−07) and support in part from the Intramural Research Program of the National Institute on Alcoholism and Alcohol Abuse (grant number Y1AA3009) to P.M., D.T., N.D.V., G.J.W.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Gene-Jack Wang, Yi Zhang; Data acquisition, Feifei Wu, Fukun Jiang, Weibin Ji, Yaqi Zhang, Wenchao Zhang, Szu-Yung Ariel Wang; Data analysis, Feifei Wu, Wenchao Zhang, Weibin Ji, Guanya Li, Yang Hu, Xiaorong Wei, Haoyi Wang; Writing-Original Draft, Feifei Wu, Weibin Ji, Yi Zhang, Gene-Jack Wang, Xinbo Gao; Writing-Review & Editing, Peter Manza, Dardo Tomasi, Nora D. Volkow. All authors critically reviewed the content and approved the final version for publication.

Corresponding authors

Correspondence to Gene-Jack Wang or Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Zhang, W., Ji, W. et al. Stimulant medications in children with ADHD normalize the structure of brain regions associated with attention and reward. Neuropsychopharmacol. (2024). https://doi.org/10.1038/s41386-024-01831-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41386-024-01831-4

Search

Quick links