Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats

Abstract

Opioid use disorder is a chronic relapsing disorder encompassing misuse, dependence, and addiction to opioid drugs. Long term maintenance of associations between the reinforcing effects of the drug and the cues associated with its intake are a leading cause of relapse. Indeed, exposure to the salient drug-associated cues can lead to drug cravings and drug seeking behavior. The dorsal hippocampus (dHPC) and locus coeruleus (LC) have emerged as important structures for linking the subjective rewarding effects of opioids with environmental cues. However, their role in cue-induced reinstatement of opioid use remains to be further elucidated. In this study, we showed that chemogenetic inhibition of excitatory dHPC neurons during re-exposure to drug-associated cues significantly attenuates cue-induced reinstatement of morphine-seeking behavior. In addition, the same manipulation reduced reinstatement of sucrose-seeking behavior but failed to alter memory recall in the object location task. Finally, intact activity of tyrosine hydroxylase (TH) LC-dHPCTh afferents is necessary to drive cue induced reinstatement of morphine-seeking as inhibition of this pathway blunts cue-induced drug-seeking behavior. Altogether, these studies show an important role of the dHPC and LC-dHPCTh pathway in mediating cue-induced reinstatement of opioid seeking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inhibition of excitatory dHPC neurons attenuates cue-induced reinstatement of morphine-seeking.
Fig. 2: Inhibition of excitatory dHPC neurons does not alter memory recall during object location test.
Fig. 3: Inhibition of excitatory dHPC neurons attenuates cue-induced reinstatement of sucrose-seeking.
Fig. 4: Inhibition of LC-dHPCTh pathway diminishes cue-induced reinstatement of drug-seeking.

Similar content being viewed by others

References

  1. Nestler EJ. Molecular neurobiology of addiction. Am J Addctn. 2001;10:201–17.

    CAS  Google Scholar 

  2. Koob GF, Volkow ND. Neurocircuitry of Addiction. Neuropsychopharmacology. 2010;35:217–38.

    PubMed  Google Scholar 

  3. Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology. 2014;39:254–62.

    PubMed  Google Scholar 

  4. Creed M. Current and emerging neuromodulation therapies for addiction: insight from pre-clinical studies. Current Opinion in Neurobiology. 2018;49:168–74.

  5. Lüscher C. The emergence of a circuit model for addiction. Annu Rev Neurosci. 2016;39:257–76.

    PubMed  Google Scholar 

  6. Bossert JM, Marchant NJ, Calu DJ, Shaham Y. The reinstatement model of drug relapse: recent neurobiological findings, emerging research topics, and translational research. Psychopharmacol (Berl). 2013;229:453–76.

    CAS  Google Scholar 

  7. Schulteis G, Ahmed SH, Morse AC, Koob GF, Everitt BJ. Conditioning and opiate withdrawal. Nature. 2000;405:1013–4.

    CAS  PubMed  Google Scholar 

  8. Fuchs RA, Evans KA, Ledford CC, Parker MP, Case JM, Mehta RH, et al. The role of the dorsomedial prefrontal cortex, basolateral amygdala, and dorsal hippocampus in contextual reinstatement of cocaine seeking in rats. Neuropsychopharmacology. 2005;30:296–309.

    CAS  PubMed  Google Scholar 

  9. Xie X, Ramirez DR, Lasseter HC, Fuchs RA. Effects of mGluR1 antagonism in the dorsal hippocampus on drug context-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacol (Berl). 2010;208:1–11.

    CAS  Google Scholar 

  10. Han W-Y, Du P, Fu S-Y, Wang F, Song M, Wu C-F, et al. Oxytocin via its receptor affects restraint stress-induced methamphetamine CPP reinstatement in mice: Involvement of the medial prefrontal cortex and dorsal hippocampus glutamatergic system. Pharm Biochem Behav. 2014;119:80–87.

    CAS  Google Scholar 

  11. Felipe JM, Palombo P, Bianchi PC, Zaniboni CR, Anésio A, Yokoyama TS, et al. Dorsal hippocampus plays a causal role in context-induced reinstatement of alcohol-seeking in rats. Behav Brain Res. 2021;398:112978.

    CAS  PubMed  Google Scholar 

  12. Qi S, Tan SM, Wang R, Higginbotham JA, Ritchie JL, Ibarra CK, et al. Optogenetic inhibition of the dorsal hippocampus CA3 region during early-stage cocaine-memory reconsolidation disrupts subsequent context-induced cocaine seeking in rats. Neuropsychopharmacol. 2022;47:1473–83.

    CAS  Google Scholar 

  13. Fakira AK, Massaly N, Cohensedgh O, Berman A, Morón JA. Morphine-associated contextual cues induce structural plasticity in hippocampal CA1 pyramidal neurons. Neuropsychopharmacology. 2016;41:2668–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fakira AK, Portugal GS, Carusillo B, Melyan Z, Morón JA. Increased small conductance calcium-activated potassium type 2 channel-mediated negative feedback on N-methyl-D-aspartate receptors impairs synaptic plasticity following context-dependent sensitization to morphine. Biol Psychiatry. 2014;75:105–14.

    CAS  PubMed  Google Scholar 

  15. Xia Y, Portugal GS, Fakira AK, Melyan Z, Neve R, Lee HT, et al. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine. J Neurosci. 2011;31:16279–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Portugal GS, Al-Hasani R, Fakira AK, Gonzalez-Romero JL, Melyan Z, McCall JG, et al. Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci. 2014;34:527–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ma Y-Y, Chu N-N, Guo C-Y, Han J-S, Cui C-L. NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol. 2007;203:309–19.

    CAS  PubMed  Google Scholar 

  18. Lansink CS, Jackson JC, Lankelma JV, Ito R, Robbins TW, Everitt BJ, et al. Reward cues in space: commonalities and differences in neural coding by hippocampal and ventral striatal ensembles. J Neurosci. 2012;32:12444–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia L, Nygard SK, Sobczak GG, Hourguettes NJ, Bruchas MR. Dorsal-CA1 hippocampal neuronal ensembles encode nicotine-reward contextual associations. Cell Rep. 2017;19:2143–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Trouche S, Koren V, Doig NM, Ellender TJ, El-Gaby M, Lopes-dos-Santos V, et al. A hippocampus-accumbens tripartite neuronal motif guides appetitive memory in space. Cell. 2019;176:1393–1406.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Peleg-Raibstein D, Feldon J. Effects of dorsal and ventral hippocampal NMDA stimulation on nucleus accumbens core and shell dopamine release. Neuropharmacology. 2006;51:947–57.

    CAS  PubMed  Google Scholar 

  22. Zarrindast M-R, Nasehi M, Rostami P, Rezayof A, Fazli-Tabaei S. Repeated administration of dopaminergic agents in the dorsal hippocampus and morphine-induced place preference. Behav Pharmacol. 2005;16:85.

    CAS  PubMed  Google Scholar 

  23. Rezayof A, Zarrindast M-R, Sahraei H, Haeri-Rohani A. Involvement of dopamine receptors of the dorsal hippocampus on the acquisition and expression of morphine-induced place preference in rats. J Psychopharmacol. 2003;17:415–23.

    CAS  PubMed  Google Scholar 

  24. Tsetsenis T, Broussard JI, Dani JA. Dopaminergic regulation of hippocampal plasticity, learning, and memory. Front Behav Neurosci. 2023;16:1092420.

    PubMed  PubMed Central  Google Scholar 

  25. Tsetsenis T, Badyna JK, Li R, Dani JA. Activation of a locus coeruleus to dorsal hippocampus noradrenergic circuit facilitates associative learning. Front Cell Neurosci. 2022;16:887679.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Breton-Provencher V, Drummond GT, Sur M. Locus coeruleus norepinephrine in learned behavior: anatomical modularity and spatiotemporal integration in targets. Front Neural Circuits. 2021;15:638007.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schwarz LA, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25:R1051–R1056.

    CAS  PubMed  Google Scholar 

  28. Sahraei H, Motamedi F, Khoshbaten A, Zarrindast M-R. Adenosine A2 receptors inhibit morphine self-administration in rats. Eur J Pharmacol. 1999;383:107–13.

    CAS  PubMed  Google Scholar 

  29. Markovic T, Pedersen CE, Massaly N, Vachez YM, Ruyle B, Murphy CA, et al. Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior. Nat Neurosci. 2021;24:1601–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuo C-C, Hsieh J-C, Tsai H-C, Kuo Y-S, Yau H-J, Chen C-C, et al. Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. J Physiol. 2020;598:4003–29.

    CAS  PubMed  Google Scholar 

  31. Bittner KC, Milstein AD, Grienberger C, Romani S, Magee JC. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science. 2017;357:1033–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Connor EC, Chapman K, Butler P, Mead AN. The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev. 2011;35:912–38.

    PubMed  Google Scholar 

  33. Vogel-Ciernia A, Wood MA. Examining object location and object recognition memory in mice. Curr Protoc Neurosci. 2014;69:8.31.1–8.31.17.

    PubMed  Google Scholar 

  34. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci. 2016;113:14835–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilson LR, Plummer NW, Evsyukova IY, Patino D, Stewart CL, Smith KG, et al. Partial or complete loss of norepinephrine differentially alters contextual fear and catecholamine release dynamics in hippocampal CA1. Biol Psychiatry Glob Open Sci. 2024;4:51–60.

    PubMed  Google Scholar 

  36. Seo D-O, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, et al. A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron. 2021;109:2116–2130.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tse D, Privitera L, Norton AC, Gobbo F, Spooner P, Takeuchi T, et al. Cell-type-specific optogenetic stimulation of the locus coeruleus induces slow-onset potentiation and enhances everyday memory in rats. Proc Natl Acad Sci. 2023;120:e2307275120.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. James T, Kula B, Choi S, Khan SS, Bekar LK, Smith NA. Locus coeruleus in memory formation and Alzheimer’s disease. Eur J Neurosci. 2021;54:6948–59.

    CAS  PubMed  Google Scholar 

  39. Volkow ND, McLellan AT. Opioid abuse in chronic pain — misconceptions and mitigation strategies. N. Engl J Med. 2016;374:1253–63.

    CAS  PubMed  Google Scholar 

  40. Smyth BP, Barry J, Keenan E, Ducray K. Lapse and relapse following inpatient treatment of opiate dependence. Ir Med J. 2010;103:176–9.

    CAS  PubMed  Google Scholar 

  41. Valentino RJ, Volkow ND. Untangling the complexity of opioid receptor function. Neuropsychopharmacology. 2018;43:2514–20.

    PubMed  PubMed Central  Google Scholar 

  42. Kenny PJ, Chen SA, Kitamura O, Markou A, Koob GF. Conditioned withdrawal drives heroin consumption and decreases reward sensitivity. J Neurosci. 2006;26:5894–5900.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Han H, Dong Z, Jia Y, Mao R, Zhou Q, Yang Y, et al. Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus. Sci Rep. 2015;5:9666.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rezayof A, Zatali H, Haeri-Rohani A, Zarrindast M-R. Dorsal hippocampal muscarinic and nicotinic receptors are involved in mediating morphine reward. Behav Brain Res. 2006;166:281–90.

    CAS  PubMed  Google Scholar 

  45. McGlinchey EM, Aston-Jones G. Dorsal hippocampus drives context-induced cocaine seeking via inputs to lateral septum. Neuropsychopharmacol. 2018;43:987–1000.

    CAS  Google Scholar 

  46. Kutlu MG, Gould TJ. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: contributions to development and maintenance of addiction. Learn Mem. 2016;23:515–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramirez DR, Bell GH, Lasseter HC, Xie X, Traina SA, Fuchs RA. Dorsal hippocampal regulation of memory reconsolidation processes that facilitate drug context-induced cocaine-seeking behavior in rats. Eur J Neurosci. 2009;30:901–12.

    PubMed  PubMed Central  Google Scholar 

  48. Wilmot JH, Puhger K, Wiltgen BJ. Acute disruption of the dorsal hippocampus impairs the encoding and retrieval of trace fear memories. Front Behav Neurosci. 2019;13:116.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wells AM, Xie X, Higginbotham JA, Arguello AA, Healey KL, Blanton M, et al. Contribution of an SFK-mediated signaling pathway in the dorsal hippocampus to cocaine-memory reconsolidation in rats. Neuropsychopharmacology. 2016;41:675–85.

    CAS  PubMed  Google Scholar 

  50. Fuchs RA, Higginbotham JA, Lyons CE. Chapter 45 - Hippocampal contributions to dopamine receptor-mediated effects of cocaine. In: Preedy VR, editor. The Neuroscience of Cocaine, San Diego: Academic Press; 2017. p. 449–59.

  51. Reiner DJ, Fredriksson I, Lofaro OM, Bossert JM, Shaham Y. Relapse to opioid seeking in rat models: behavior, pharmacology and circuits. Neuropsychopharmacology. 2019;44:465–77.

    PubMed  Google Scholar 

  52. Sedki F, D’Cunha TM, Rizzo D, Mayers L, Cohen J, Chao ST, et al. Modulation of cue value and the augmentation of heroin seeking in chronically food-restricted male rats under withdrawal. Pharmacol Biochem Behav. 2023;231:173636.

    CAS  PubMed  Google Scholar 

  53. Chowdhury A, Luchetti A, Fernandes G, Filho DA, Kastellakis G, Tzilivaki A, et al. A locus coeruleus-dorsal CA1 dopaminergic circuit modulates memory linking. Neuron. 2022;110:3374–3388.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Petter EA, Fallon IP, Hughes RN, Watson GDR, Meck WH, Ulloa Severino FP, et al. Elucidating a locus coeruleus-dentate gyrus dopamine pathway for operant reinforcement. Elife. 2023;12:e83600.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Han Y, Zhang Y, Kim H, Grayson VS, Jovasevic V, Ren W, et al. Excitatory VTA to DH projections provide a valence signal to memory circuits. Nat Commun. 2020;11:1466.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by US National Institutes of Health (NIH) grants DA054900 (JAM), DA045463 (JAM), DA041781 (JAM), DA042499 (JAM), DA055047 (JGM, NM), and NS117899 (JGM).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization - TM, NM, JGM; and JAM; Methodology - TM, and JAM; Formal Analysis of all data - TM, and JAM; Operant behavior - TM, JH, NM, RHT, JJD, and HJY; Object location test – JY, JJG, ES; Immunohistochemistry - BR, TM, JA, and JJG; Surgeries - TM, JH, and NM; Electrophysiology – CK, JRK, and JGM; Writing (Original draft) - TM, and JAM; Writing (Review & Editing) - TM, JH, BR, and JAM; Funding Acquisition – JGM, NM, and JAM; Resources - JAM; Supervision - TM, JGM and JAM.

Corresponding author

Correspondence to Jose A. Morón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markovic, T., Higginbotham, J., Ruyle, B. et al. A locus coeruleus to dorsal hippocampus pathway mediates cue-induced reinstatement of opioid self-administration in male and female rats. Neuropsychopharmacol. 49, 915–923 (2024). https://doi.org/10.1038/s41386-024-01828-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-024-01828-z

Search

Quick links