Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice

Abstract

Use of the synthetic opioid fentanyl increased ~300% in the last decade, including among women of reproductive ages. Adverse neonatal outcomes and long-term behavioral disruptions are associated with perinatal opioid exposure. Our previous work demonstrated that perinatal fentanyl exposed mice displayed enhanced negative affect and somatosensory circuit and behavioral disruptions during adolescence. However, little is known about molecular adaptations across brain regions that underlie these outcomes. We performed RNA sequencing across three reward and two sensory brain areas to study transcriptional programs in perinatal fentanyl exposed juvenile mice. Pregnant dams received 10 μg/ml fentanyl in the drinking water from embryonic day 0 (E0) through gestational periods until weaning at postnatal day 21 (P21). RNA was extracted from nucleus accumbens (NAc), prelimbic cortex (PrL), ventral tegmental area (VTA), somatosensory cortex (S1) and ventrobasal thalamus (VBT) from perinatal fentanyl exposed mice of both sexes at P35. RNA sequencing was performed, followed by analysis of differentially expressed genes (DEGs) and gene co-expression networks. Transcriptome analysis revealed DEGs and gene modules significantly associated with exposure to perinatal fentanyl in a sex-wise manner. The VTA had the most DEGs, while robust gene enrichment occurred in NAc. Genes enriched in mitochondrial respiration were pronounced in NAc and VTA of perinatal fentanyl exposed males, extracellular matrix (ECM) and neuronal migration enrichment were pronounced in NAc and VTA of perinatal fentanyl exposed males, while genes associated with vesicular cycling and synaptic signaling were markedly altered in NAc of perinatal fentanyl exposed female mice. In sensory areas from perinatal fentanyl exposed females, we found alterations in mitochondrial respiration, synaptic and ciliary organization processes. Our findings demonstrate distinct transcriptomes across reward and sensory brain regions, with some showing discordance between sexes. These transcriptome adaptations may underlie structural, functional, and behavioral changes observed in perinatal fentanyl exposed mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Transcriptomic profiling of reward and sensory brain areas of perinatal fentanyl exposed juvenile mice.
Fig. 2: Threshold-free analysis of concordant and discordant gene overlap between sexes across brain areas in perinatal fentanyl exposed mice.
Fig. 3: Weighted gene co-expression network analyses (WGCNA) showing significant modules associated with fentanyl in a sex-wise manner in reward brain areas.
Fig. 4: WGCNA showing significant modules associated with fentanyl in a sex-wise manner in sensory brain areas.
Fig. 5: In silico predictions of top transcription factors regulating fentanyl associated developmental processes.

Similar content being viewed by others

References

  1. Volkow ND, Blanco C. The changing opioid crisis: development, challenges and opportunities. Mol Psychiatry. 2021;26:218–33.

    Article  PubMed  Google Scholar 

  2. Elmore AL, Omofuma OO, Sevoyan M, Richard C, Liu J. Prescription opioid use among women of reproductive age in the United States: NHANES, 2003–2018. Prev Med. 2021;153:106846.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jansson LM, Velez M, Harrow C. The opioid exposed newborn: assessment and pharmacologic management. J Opioid Manag. 2009;5:47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Reddy UM, Davis JM, Ren Z, Greene MF. Opioid use in pregnancy, neonatal abstinence syndrome, and childhood outcomes: executive summary of a joint workshop by the Eunice Kennedy Shriver National Institute of Child Health and Human Development, American Congress of Obstetricians and Gynecologists, American Academy of Pediatrics, Society for Maternal-Fetal Medicine, Centers for Disease Control and Prevention, and the March of Dimes Foundation. Obstet Gynecol. 2017;130:10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ornoy A, Michailevskaya V, Lukashov I, Bar-Hamburger R, Harel S. The developmental outcome of children born to heroin-dependent mothers, raised at home or adopted. Child Abus Negl. 1996;20:385–96.

    Article  CAS  Google Scholar 

  6. Hudak ML, Tan RC, Committee on Drugs, Committee on Fetus and Newborn, Frattarelli DA, Galinkin JL, et al. Neonatal drug withdrawal. Pediatrics. 2012;129:e540–e560.

    Article  PubMed  Google Scholar 

  7. Grecco GG, Huang JY, Muñoz B, Doud EH, Hines CD, Gao Y, et al. Sex-dependent synaptic remodeling of the somatosensory cortex in mice with prenatal methadone exposure. Adv Drug Alcohol Res. 2022;2:10400.

  8. Wallin CM, Bowen SE, Roberge CL, Richardson LM, Brummelte S. Gestational buprenorphine exposure: effects on pregnancy, development, neonatal opioid withdrawal syndrome, and behavior in a translational rodent model. Drug Alcohol Depend. 2019;205:107625.

    Article  CAS  PubMed  Google Scholar 

  9. Bruijnzeel AW, Gold MS. The role of corticotropin-releasing factor-like peptides in cannabis, nicotine, and alcohol dependence. Brain Res Rev. 2005;49:505–28.

    Article  CAS  PubMed  Google Scholar 

  10. Liu J, Pan H, Gold MS, Derendorf H, Bruijnzeel AW. Effects of fentanyl dose and exposure duration on the affective and somatic signs of fentanyl withdrawal in rats. Neuropharmacology. 2008;55:812–8.

    Article  CAS  PubMed  Google Scholar 

  11. Alipio JB, Haga C, Fox ME, Arakawa K, Balaji R, Cramer N, et al. Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior. J Neurosci. 2021;41:3400–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Goetz TG, Becker JB, Mazure CM. Women, opioid use and addiction. FASEB J. 2021;35:e21303.

    Article  CAS  PubMed  Google Scholar 

  13. Byrnes EM, Vassoler FM. Modeling prenatal opioid exposure in animals: current findings and future directions. Front Neuroendocrinol. 2018;51:1–3.

    Article  CAS  PubMed  Google Scholar 

  14. Alipio JB, Brockett AT, Fox ME, Tennyson SS, deBettencourt CA, El‐Metwally D, et al. Enduring consequences of perinatal fentanyl exposure in mice. Addict Biol. 2021;26:e12895.

    Article  CAS  PubMed  Google Scholar 

  15. Fox ME, Wulff AB, Franco D, Choi EY, Calarco CA, Engeln M, et al. Adaptations in nucleus accumbens neuron subtypes mediate negative affective behaviors in fentanyl abstinence. Biol Psychiatry. 2023;93:489–501.

    Article  CAS  PubMed  Google Scholar 

  16. Engeln M, Song Y, Chandra R, La A, Fox ME, Evans B, et al. Individual differences in stereotypy and neuron subtype translatome with TrkB deletion. Mol Psychiatry. 2021;26:1846–59.

    Article  CAS  PubMed  Google Scholar 

  17. Ayllon-Benitez A, Bourqui R, Thébault P, Mougin F. GSAn: an alternative to enrichment analysis for annotating gene sets. NAR Genomics Bioinform. 2020;2:lqaa017.

    Article  Google Scholar 

  18. Kolberg L, Raudvere U, Kuzmin I, Vilo J, Peterson H. gprofiler2-an R package for gene list functional enrichment analysis and namespace conversion toolset g: profiler. F1000Res. 2020;9:709.

  19. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1–10.

    Google Scholar 

  20. Janky RS, Verfaillie A, Imrichová H, Van de Sande B, Standaert L, Christiaens V, et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol. 2014;10:e1003731.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–39.

    Article  CAS  PubMed  Google Scholar 

  22. Ray MH, Williams BR, Kuppe MK, Bryant CD, Logan RW. A Glitch in the matrix: the role of extracellular matrix remodeling in opioid use disorder. Front Integr Neurosci. 2022;16:899637.

  23. Browne CJ, Godino A, Salery M, Nestler EJ. Epigenetic mechanisms of opioid addiction. Biol Psychiatry. 2020;87:22–33.

    Article  CAS  PubMed  Google Scholar 

  24. Mendez EF, Wei H, Hu R, Stertz L, Fries GR, Wu X, et al. Angiogenic gene networks are dysregulated in opioid use disorder: evidence from multi-omics and imaging of postmortem human brain. Mol Psychiatry. 2021;26:7803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wade CL, Schuster DJ, Domingo KM, Kitto KF, Fairbanks CA. Supraspinally-administered agmatine attenuates the development of oral fentanyl self-administration. Eur J Pharmacol. 2008;587:135–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simon NW, Moghaddam B. Neural processing of reward in adolescent rodents. Dev Cogn Neurosci. 2015;11:145–54.

    Article  PubMed  Google Scholar 

  27. Doherty JM, Cooke BM, Frantz KJ. A role for the prefrontal cortex in heroin-seeking after forced abstinence by adult male rats but not adolescents. Neuropsychopharmacology. 2013;38:446–54.

    Article  CAS  PubMed  Google Scholar 

  28. Fujihara Y, Noda T, Kobayashi K, Oji A, Kobayashi S, Matsumura T, et al. Identification of multiple male reproductive tract-specific proteins that regulate sperm migration through the oviduct in mice. Proc Natl Acad Sci USA. 2019;116:18498–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bucan M, Abrahams BS, Wang K, Glessner JT, Herman EI, Sonnenblick LI, et al. Genome-wide analyses of exonic copy number variants in a family-based study point to novel autism susceptibility genes. PLoS Genet. 2009;5:e1000536.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ge G, Greenspan DS. Developmental roles of the BMP/TLD metalloproteinases. Birth Defects Res Part C Embryo Today Rev. 2006;78:47–68.

    Article  CAS  Google Scholar 

  31. Lull ME, Erwin MS, Morgan D, Roberts DCS, Vrana KE, Freeman WM. Persistent proteomic alterations in the medial prefrontal cortex with abstinence from cocaine self-administration. Proteom Clin Appl. 2009;3:462–72. https://doi.org/10.1002/prca.200800055.

    Article  CAS  Google Scholar 

  32. Garcia-Fuster MJ, Ferrer-Alcon M, Miralles A, Garcia-Sevilla JA. Modulation of Fas receptor proteins and dynamin during opiate addiction and induction of opiate withdrawal in rat brain. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:421–31.

    Article  CAS  PubMed  Google Scholar 

  33. Drastichova Z, Hejnova L, Moravcova R, Novotny J. Proteomic analysis unveils expressional changes in cytoskeleton- and synaptic plasticity-associated proteins in rat brain six months after withdrawal from morphine. Life. 2021;11:683. https://doi.org/10.3390/life11070683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shiosaka S, Yoshida S. Synaptic microenvironments—structural plasticity, adhesion molecules, proteases and their inhibitors. Neurosci Res. 2000;37:85–9.

    Article  CAS  PubMed  Google Scholar 

  35. Borrelli KN, Yao EJ, Yen WW, Phadke RA, Ruan QT, Chen MM, et al. Sex differences in behavioral and brainstem transcriptomic neuroadaptations following neonatal opioid exposure in outbred mice. eNeuro. 2021;8:ENEURO.0143-21.2021. https://doi.org/10.1523/ENEURO.0143-21.2021.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cogliati T, Good DJ, Haigney M, Delgado-Romero P, Eckhaus MA, Koch WJ, et al. Predisposition to arrhythmia and autonomic dysfunction in Nhlh1-deficient mice. Mol Cell Biol. 2002;22:4977–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. van Weert LTCM. Genomic glucocorticoid signaling in the hippocampus: understanding receptor specificity and context dependency. Diss. Leiden University, 2021. Retrieved from https://hdl.handle.net/1887/3240129.

  38. Cooper AJ, Narasimhan S, Rickels K, Lohoff FW. Genetic polymorphisms in the PACAP and PAC1 receptor genes and treatment response to venlafaxine XR in generalized anxiety disorder. Psychiatry Res. 2013;210:1299–300.

    Article  CAS  PubMed  Google Scholar 

  39. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, et al. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci USA. 2001;98:13355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gower‐Winter SD, Levenson CW. Zinc in the central nervous system: from molecules to behavior. Biofactors. 2012;38:186–93.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hajianfar H, Mollaghasemi N, Tavakoly R, Campbell MS, Mohtashamrad M, Arab A. The association between dietary zinc intake and health status, including mental health and sleep quality, among Iranian female students. Biol Trace Elem Res. 2021;199:1754–61.

    Article  CAS  PubMed  Google Scholar 

  42. Hagmeyer S, Haderspeck JC, Grabrucker AM. Behavioral impairments in animal models for zinc deficiency. Front Behav Neurosci. 2015;8:443.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4:176–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin DM, Skidmore JM, Philips ST, Vieira C, Gage PJ, Condie BG, et al. PITX2 is required for normal development of neurons in the mouse subthalamic nucleus and midbrain. Dev Biol. 2004;267:93–108.

    Article  CAS  PubMed  Google Scholar 

  45. Symmank J, Gölling V, Gerstmann K, Zimmer G. The transcription factor LHX1 regulates the survival and directed migration of POA-derived cortical interneurons. Cereb Cortex. 2019;29:1644–58.

    Article  PubMed  Google Scholar 

  46. Delogu A, Sellers K, Zagoraiou L, Bocianowska-Zbrog A, Mandal S, Guimera J, et al. Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron. 2012;75:648–62.

    Article  CAS  PubMed  Google Scholar 

  47. Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci. 2014;71:1395–415.

    Article  CAS  PubMed  Google Scholar 

  48. Nieto-Estévez V, Donegan JJ, McMahon CL, Elam HB, Chavera TA, Varma P, et al. Buprenorphine exposure alters the development and migration of interneurons in the cortex. Front Mol Neurosci. 2022;15:889922.

  49. Chandra R, Engeln M, Schiefer C, Patton MH, Martin JA, Werner CT, et al. Drp1 mitochondrial fission in D1 neurons mediates behavioral and cellular plasticity during early cocaine abstinence. Neuron. 2017;96:1327–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wojcieszak J, Andrzejczak D, Szymańska B, Zawilska JB. Induction of immediate early genes expression in the mouse striatum following acute administration of synthetic cathinones. Pharmacol Rep. 2019;71:977–82.

    Article  CAS  PubMed  Google Scholar 

  51. Chin MH, Qian WJ, Wang H, Petyuk VA, Bloom JS, Sforza DM, et al. Mitochondrial dysfunction, oxidative stress, and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson’s disease. J Proteome Res. 2008;7:666–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci. 2010;11:735–746.

    Article  CAS  PubMed  Google Scholar 

  53. Short CA, Onesto MM, Rempel SK, Catlett TS, Gomez TM. Familiar growth factors have diverse roles in neural network assembly. Curr Opin Neurobiol. 2021;66:233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Semrad TJ, Mack PC. Fibroblast growth factor signaling in non–small-cell lung cancer. Clin Lung Cancer. 2012;13:90–5.

    Article  CAS  PubMed  Google Scholar 

  55. Capobianco EN. Transcriptome signatures of dysregulated brain dynamics induce entangled network states. OBM Neurobiol. 2020;4:1–9.

    Article  Google Scholar 

  56. Zhou P, Yang G, Xie W. Organization of cortical microtubules in differentiated cells. J Cell Physiol. 2023;238:1141–7.

  57. Maino B, Ciotti MT, Calissano P, Cavallaro S. Transcriptional analysis of apoptotic cerebellar granule neurons following rescue by gastric inhibitory polypeptide. Int J Mol Sci. 2014;15:5596–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huning L, Kunkel GR. The ubiquitous transcriptional protein ZNF143 activates a diversity of genes while assisting to organize chromatin structure. Gene. 2021;769:145205.

    Article  CAS  PubMed  Google Scholar 

  59. Lu W, Chen Z, Zhang H, Wang Y, Luo Y, Huang P. ZNF143 transcription factor mediates cell survival through upregulation of the GPX1 activity in the mitochondrial respiratory dysfunction. Cell Death Dis. 2012;3:e422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mulligan MK, Ponomarev I, Hitzemann RJ, Belknap JK, Tabakoff B, Harris RA, et al. Toward understanding the genetics of alcohol drinking through transcriptome metatanalysis. Proc Natl Acad Sci USA. 2006;18103:6368–73.

    Article  Google Scholar 

  61. Candice C. Gene expression under the influence: transcriptional profiling of ethanol in the brain. Curr Psychopharmacol. 2012;1:301–14.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the UMSOM Institute for Genome Sciences for RNAseq services.

Funding

This work was supported by NIH R01DA054905 (to MKL, SAA, and AK), R01DA038613 (to MKL), University of Maryland Strategic Partnership Empowering the State, and University of Maryland School of Medicine (UMSOM) Center for Substance Use in Pregnancy.

Author information

Authors and Affiliations

Authors

Contributions

CAC, MEF, JBA, CH and MDT assisted with experiments and tissue collection. SAA, MB, JO and GK analyzed data. JO, MEF, MKL, AK and SAA oversaw experimental design. JO and MKL oversaw data interpretation and writing the manuscript. MKL conceived and directed the project. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Mary Kay Lobo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusakin, J., Kumar, G., Basu, M. et al. Transcriptomic profiling of reward and sensory brain areas in perinatal fentanyl exposed juvenile mice. Neuropsychopharmacol. 48, 1724–1734 (2023). https://doi.org/10.1038/s41386-023-01639-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41386-023-01639-8

This article is cited by

Search

Quick links