Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A disinhibitory microcircuit of the orbitofrontal cortex mediates cocaine preference in mice

Abstract

Both clinical and animal studies showed that the impaired functions of the orbitofrontal cortex (OFC) underlie the compulsive drug-seeking behavior of drug addiction. However, the functional changes of the microcircuit in the OFC and the underlying molecular mechanisms in drug addiction remain elusive, and little is known for whether microcircuits in the OFC contributed to drug addiction-related behaviors. Utilizing the cocaine-induced conditioned-place preference model, we found that the malfunction of the microcircuit led to disinhibition in the OFC after cocaine withdrawal. We further showed that enhanced Somatostatin-Parvalbumin (SST-PV) inhibitory synapse strength changed microcircuit function, and SST and PV inhibitory neurons showed opposite contributions to the drug addiction-related behavior of mice. Brevican of the perineuronal nets of PV neurons regulated SST-PV synapse strength, and the knockdown of Brevican alleviated cocaine preference. These results reveal a novel molecular mechanism of the regulation of microcircuit function and a novel circuit mechanism of the OFC in gating cocaine preference.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Withdrawal from cocaine compromised inhibitory transmission in the OFC with different contributions from the OFC interneurons.
Fig. 2: Cocaine mice showed impaired function of the inhibitory microcircuit in the OFC.
Fig. 3: PV+ neurons of Cocaine mice received more inhibitory inputs from SST+ neurons.
Fig. 4: PV+ neurons of Cocaine mice showed increased ratio of SST + vGAT puncta density and perineuronal nets expression.
Fig. 5: Knockdown of Brevican of PNNs diminished place preference of Cocaine mice in CPP test.

Similar content being viewed by others

Data availability

All data are available upon request.

References

  1. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001;4:95–102.

    Article  PubMed  Google Scholar 

  2. Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, et al. Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatry. 2002;51:134–42.

    Article  CAS  PubMed  Google Scholar 

  3. Bariselli S, Miyazaki NL, Creed MC, Kravitz AV. Orbitofrontal-striatal potentiation underlies cocaine-induced hyperactivity. Nat Commun. 2020;11:3996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harada M, Pascoli V, Hiver A, Flakowski J, Luscher C. Corticostriatal activity driving compulsive reward seeking. Biol Psychiatry. 2021;90:808–18.

    Article  PubMed  Google Scholar 

  5. Xue AM, Foerde K, Walsh BT, Steinglass JE, Shohamy D, Bakkour A. Neural representations of food-related attributes in the human orbitofrontal cortex during choice deliberation in Anorexia Nervosa. J Neurosci. 2022;42:109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakao T, Okada K, Kanba S. Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci. 2014;68:587–605.

    Article  PubMed  Google Scholar 

  7. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat Neurosci. 2013;16:1068–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campagnola L, Seeman SC, Chartrand T, Kim L, Hoggarth A, Gamlin C, et al. Local connectivity and synaptic dynamics in mouse and human neocortex. Science. 2022;375:eabj5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu H, Jeong HY, Tremblay R, Rudy B. Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4. Neuron. 2013;77:155–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang W, Zhang L, Liang B, Schroeder D, Zhang ZW, Cox GA, et al. Hyperactive somatostatin interneurons contribute to excitotoxicity in neurodegenerative disorders. Nat Neurosci. 2016;19:557–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu H, Liu L, Tian Y, Wang J, Li J, Zheng J, et al. A disinhibitory microcircuit mediates conditioned social fear in the prefrontal cortex. Neuron. 2019;102:668–682.e665.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Daly KM, Liang B, Zhang L, Li X, Li Y, et al. BDNF rescues prefrontal dysfunction elicited by pyramidal neuron-specific DTNBP1 deletion in vivo. J Mol Cell Biol. 2017;9:117–31.

    Article  CAS  PubMed  Google Scholar 

  13. Rothman JS, Silver RA. NeuroMatic: an integrated open-source software toolkit for acquisition, analysis and simulation of electrophysiological data. Front Neuroinform. 2018;12:14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

    Article  CAS  PubMed  Google Scholar 

  15. Nentwig TB, Obray JD, Vaughan DT, Chandler LJ. Behavioral and slice electrophysiological assessment of DREADD ligand, deschloroclozapine (DCZ) in rats. Sci Rep. 2022;12:6595.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nagai Y, Miyakawa N, Takuwa H, Hori Y, Oyama K, Ji B, et al. Deschloroclozapine, a potent and selective chemogenetic actuator enables rapid neuronal and behavioral modulations in mice and monkeys. Nat Neurosci. 2020;23:1157–67.

    Article  CAS  PubMed  Google Scholar 

  17. Cummings KA, Clem RL. Prefrontal somatostatin interneurons encode fear memory. Nat Neurosci. 2020;23:61–74.

    Article  CAS  PubMed  Google Scholar 

  18. Dao NC, Brockway DF, Suresh Nair M, Sicher AR, Crowley NA. Somatostatin neurons control an alcohol binge drinking prelimbic microcircuit in mice. Neuropsychopharmacology. 2021;46:1906–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jiang C, Wang X, Le Q, Liu P, Liu C, Wang Z, et al. Morphine coordinates SST and PV interneurons in the prelimbic cortex to disinhibit pyramidal neurons and enhance reward. Mol Psychiatry. 2021;26:1178–93.

    Article  CAS  PubMed  Google Scholar 

  20. Koppe G, Bruckner G, Brauer K, Hartig W, Bigl V. Developmental patterns of proteoglycan-containing extracellular matrix in perineuronal nets and neuropil of the postnatal rat brain. Cell Tissue Res. 1997;288:33–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bukalo O, Schachner M, Dityatev A. Hippocampal metaplasticity induced by deficiency in the extracellular matrix glycoprotein tenascin-R. J Neurosci. 2007;27:6019–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faissner A, Pyka M, Geissler M, Sobik T, Frischknecht R, Gundelfinger ED, et al. Contributions of astrocytes to synapse formation and maturation—potential functions of the perisynaptic extracellular matrix. Brain Res. Rev. 2010;63:26–38.

    Article  CAS  PubMed  Google Scholar 

  23. Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat. Neurosci. 2012;15:414–22. s411-412

    Article  CAS  PubMed  Google Scholar 

  24. Sigal YM, Bae H, Bogart LJ, Hensch TK, Zhuang X. Structural maturation of cortical perineuronal nets and their perforating synapses revealed by superresolution imaging. Proc Natl Acad Sci USA. 2019;116:7071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gottschling C, Wegrzyn D, Denecke B, Faissner A. Elimination of the four extracellular matrix molecules tenascin-C, tenascin-R, brevican and neurocan alters the ratio of excitatory and inhibitory synapses. Sci Rep. 2019;9:13939.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xue YX, Xue LF, Liu JF, He J, Deng JH, Sun SC, et al. Depletion of perineuronal nets in the amygdala to enhance the erasure of drug memories. J Neurosci. 2014;34:6647–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu Z, Han Y, Hu D, Chen N, Zhang Z, Chen W, et al. Neurocan regulates vulnerability to stress and the anti-depressant effect of ketamine in adolescent rats. Mol Psychiatry. 2022;27:2522–32.

    Article  CAS  PubMed  Google Scholar 

  28. Favuzzi E, Marques-Smith A, Deogracias R, Winterflood CM, Sanchez-Aguilera A, Mantoan L, et al. Activity-dependent gating of parvalbumin interneuron function by the perineuronal net protein brevican. Neuron. 2017;95:639–655 e610.

    Article  CAS  PubMed  Google Scholar 

  29. Fawcett JW, Oohashi T, Pizzorusso T. The roles of perineuronal nets and the perinodal extracellular matrix in neuronal function. Nat Rev Neurosci. 2019;20:451–65.

    Article  CAS  PubMed  Google Scholar 

  30. Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, et al. Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage. 2003;19:1085–94.

    Article  CAS  PubMed  Google Scholar 

  31. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38.

    Article  PubMed  Google Scholar 

  32. Volkow ND, Fowler JS. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb Cortex. 2000;10:318–25.

    Article  CAS  PubMed  Google Scholar 

  33. Schoenbaum G, Saddoris MP, Ramus SJ, Shaham Y, Setlow B. Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci. 2004;19:1997–2002.

    Article  PubMed  Google Scholar 

  34. Schoenbaum G, Shaham Y. The role of orbitofrontal cortex in drug addiction: a review of preclinical studies. Biol Psychiatry. 2008;63:256–62.

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Wang G, Zhang W, Han Y, Zhang L, Xu H, et al. An orbitofrontal cortex-anterior insular cortex circuit gates compulsive cocaine use. Sci Adv. 2022;8:eabq5745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li Y, Simmler LD, Van Zessen R, Flakowski J, Wan JX, Deng F, et al. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science. 2021;373:1252–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Packer AM, Yuste R. Dense, unspecific connectivity of neocortical parvalbumin-positive interneurons: a canonical microcircuit for inhibition? J Neurosci. 2011;31:13260–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morawski M, Bruckner MK, Riederer P, Bruckner G, Arendt T. Perineuronal nets potentially protect against oxidative stress. Exp Neurol. 2004;188:309–15.

    Article  CAS  PubMed  Google Scholar 

  39. Banerjee SB, Gutzeit VA, Baman J, Aoued HS, Doshi NK, Liu RC, et al. Perineuronal nets in the adult sensory cortex are necessary for fear learning. Neuron. 2017;95:169–179 e163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gogolla N, Caroni P, Luthi A, Herry C. Perineuronal nets protect fear memories from erasure. Science 2009;325:1258–61.

    Article  CAS  PubMed  Google Scholar 

  41. Shi W, Wei X, Wang X, Du S, Liu W, Song J, et al. Perineuronal nets protect long-term memory by limiting activity-dependent inhibition from parvalbumin interneurons. Proc Natl Acad Sci USA. 2019;116:27063–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cichon S, Muhleisen TW, Degenhardt FA, Mattheisen M, Miro X, Strohmaier J, et al. Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. Am J Hum Genet. 2011;88:372–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rybakowski JK, Skibinska M, Leszczynska-Rodziewicz A, Kaczmarek L, Hauser J. Matrix metalloproteinase-9 gene and bipolar mood disorder. Neuromol Med. 2009;11:128–32.

    Article  CAS  Google Scholar 

  44. Spijker S, Koskinen MK, Riga D. Incubation of depression: ECM assembly and parvalbumin interneurons after stress. Neurosci Biobehav Rev. 2020;118:65–79.

    Article  PubMed  Google Scholar 

  45. de Araujo Costa Folha OA, Bahia CP, de Aguiar GPS, Herculano AM, Coelho NLG, de Sousa MBC, et al. Effect of chronic stress during adolescence in prefrontal cortex structure and function. Behav Brain Res. 2017;326:44–51.

    Article  PubMed  Google Scholar 

  46. Ueno H, Suemitsu S, Murakami S, Kitamura N, Wani K, Matsumoto Y, et al. Juvenile stress induces behavioral change and affects perineuronal net formation in juvenile mice. BMC Neurosci. 2018;19:41.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased density of perineuronal net in prelimbic cortex Is linked to depressive-like behavior in young-aged rats. Front Mol Neurosci. 2020;13:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen H, He D, Lasek AW. Repeated binge drinking increases perineuronal nets in the insular cortex. Alcohol Clin Exp Res. 2015;39:1930–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lavertu-Jolin M, Chattopadhyaya B, Chehrazi P, Carrier D, Wunnemann F, Leclerc S, et al. Acan downregulation in parvalbumin GABAergic cells reduces spontaneous recovery of fear memories. Mol Psychiatry. 2023;28:2946–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was supported in part by the Ministry of Science and Technology of China (STI2030-Major Projects 2021ZD0202900 and 2019YFA0706201, W.Z.), National Natural Science Foundation of China (32170960, W.Z.).

Author information

Authors and Affiliations

Authors

Contributions

W.Z. conceived and designed the experiments. Z.H., X.W., J.T., Y.W, Y.F, J.D., and W.Z. performed the experiments. Z.H., J.T., Y.F. and W.Z. analyzed and interpreted the data. W.Z. wrote the manuscript.

Corresponding author

Correspondence to Wen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Wei, X., Tian, J. et al. A disinhibitory microcircuit of the orbitofrontal cortex mediates cocaine preference in mice. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-024-02579-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-024-02579-5

Search

Quick links