Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors

Abstract

The development of drug addiction is associated with functional adaptations within the reward circuitry, within which the nucleus accumbens (NAc) is anatomically positioned as an interface between motivational salience and behavioral output. The functional output of NAc is profoundly altered after exposure to drugs of abuse, and some of the functional changes continue to evolve during drug abstinence, contributing to numerous emotional and motivational alterations related drug taking, seeking, and relapse. As in most brain regions, the functional output of NAc is critically dependent on the dynamic interaction between excitation and inhibition. One of the most prominent sources of inhibition within the NAc arises from fast-spiking interneurons (FSIs). Each NAc FSI innervates hundreds of principal neurons, and orchestrates population activity through its powerful and sustained feedforward inhibition. While the role of NAc FSIs in the context of drug addiction remains poorly understood, emerging evidence suggests that FSIs and FSI-mediated local circuits are key targets for drugs of abuse to tilt the functional output of NAc toward a motivational state favoring drug seeking and relapse. In this review, we discuss recent findings and our conceptualization about NAc FSI-mediated regulation of motivated and cocaine-induced behaviors. We hope that the conceptual framework proposed in this review may provide a useful guidance for ongoing and future studies to determine how FSIs influence the function of NAc and related reward circuits, ultimately leading to addictive behaviors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed role of NAc FSIs in regulating behavior.
Fig. 2: Long-term adaptations in the NAc FSI circuits induced by cocaine experience.

Similar content being viewed by others

References

  1. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016;17:351–65. https://doi.org/10.1038/nrn.2016.39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47. https://doi.org/10.1038/npp.2009.93.

    Article  PubMed  Google Scholar 

  3. Floresco SB. The nucleus accumbens: an interface between cognition, emotion, and action. Annu Rev Psychol. 2015;66:25–52. https://doi.org/10.1146/annurev-psych-010213-115159.

    Article  PubMed  Google Scholar 

  4. Dong Y, Nestler EJ. The neural rejuvenation hypothesis of cocaine addiction. Trends Pharmacol Sci. 2014;35:374–83. https://doi.org/10.1016/j.tips.2014.05.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelley AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44:161–79. https://doi.org/10.1016/j.neuron.2004.09.016.

    Article  CAS  PubMed  Google Scholar 

  6. Huang YH, Schlüter OM, Dong Y. Cocaine-induced homeostatic regulation and dysregulation of nucleus accumbens neurons. Behavioural Brain Res. 2011;216:9–18. https://doi.org/10.1016/j.bbr.2010.07.039.

    Article  CAS  Google Scholar 

  7. Tepper JM, Tecuapetla F, Koos T, Ibanez-Sandoval O. Heterogeneity and diversity of striatal GABAergic interneurons. Front Neuroanat. 2010;4:150. https://doi.org/10.3389/fnana.2010.00150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wright WJ, Schlüter OM, Dong Y. A feedforward inhibitory circuit mediated by CB1-expressing fast-spiking interneurons in the nucleus accumbens. Neuropsychopharmacology. 2017;42:1146–56. https://doi.org/10.1038/npp.2016.275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu J, et al. Nucleus accumbens feedforward inhibition circuit promotes cocaine self-administration. Proc Natl Acad Sci USA. 2017;56:201707822. https://doi.org/10.1073/pnas.1707822114.

    Article  Google Scholar 

  10. Scudder SL, Baimel C, Macdonald EE, Carter AG. Hippocampal-evoked feedforward inhibition in the nucleus accumbens. J Neurosci. 2018;38:9091–104. https://doi.org/10.1523/JNEUROSCI.1971-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trouche, S et al. A hippocampus-accumbens tripartite neuronal motif guides appetitive memory in space. Cell. 2019:1–31. https://doi.org/10.1016/j.cell.2018.12.037.

  12. Qi J, et al. VTA glutamatergic inputs to nucleus accumbens drive aversion by acting on GABAergic interneurons. Nat Neurosci. 2016;19:725–33. https://doi.org/10.1038/nn.4281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hu H, Gan J, Jonas P. Interneurons. Fast-spiking, parvalbumin+ GABAergic interneurons: from cellular design to microcircuit function. Science. 2014;345:1255263–1255263. https://doi.org/10.1126/science.1255263.

    Article  Google Scholar 

  14. Xue M, Atallah BV, Scanziani M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature. 2014;511:596–600. https://doi.org/10.1038/nature13321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Winters BD, et al. Cannabinoid receptor 1-expressing neurons in the nucleus accumbens. Proc Natl Acad Sci USA. 2012;109:E2717–2725. https://doi.org/10.1073/pnas.1206303109.

    Article  CAS  PubMed  Google Scholar 

  16. Hefft S, Jonas P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat Neurosci. 2005;8:1319–28. https://doi.org/10.1038/nn1542.

    Article  CAS  PubMed  Google Scholar 

  17. Kawaguchi Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci. 1993;13:4908–23.

    Article  CAS  Google Scholar 

  18. Bracci E, Centonze D, Bernardi G, Calabresi P. Voltage-dependent membrane potential oscillations of rat striatal fast-spiking interneurons. J Physiol. 2004;549:121–30. https://doi.org/10.1113/jphysiol.2003.040857.

    Article  Google Scholar 

  19. Brumberg JC, Nowak LG, McCormick DA. Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. J Neurosci. 2000;20:4829–43. https://doi.org/10.1523/JNEUROSCI.20-13-04829.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Golomb D, et al. Mechanisms of firing patterns in fast-spiking cortical interneurons. PLOS Computational Biol. 2007;3:e156–115. https://doi.org/10.1371/journal.pcbi.0030156.

    Article  Google Scholar 

  21. Lau T, Gage GJ, Berke JD, Zochowski M. Local dynamics of gap-junction-coupled interneuron networks. Phys Biol. 2010;7:16015. https://doi.org/10.1088/1478-3975/7/1/016015.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P. Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature. 1995;378:75–78. https://doi.org/10.1038/378075a0

    Article  CAS  PubMed  Google Scholar 

  23. Bonifazi P, et al. GABAergic hub neurons orchestrate synchrony in developing hippocampal networks. Science. 2009;326:1419–24. https://doi.org/10.1126/science.1175509.

    Article  CAS  PubMed  Google Scholar 

  24. Gan J, Weng S-m, Pernía-Andrade AJ, Csicsvari J, Jonas P. Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron. 2017;93:308–14. https://doi.org/10.1016/j.neuron.2016.12.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Taverna S, Canciani B, Pennartz CMA. Membrane properties and synaptic connectivity of fast-spiking interneurons in rat ventral striatum. Brain Res. 2007;1152:49–56. https://doi.org/10.1016/j.brainres.2007.03.053.

    Article  CAS  PubMed  Google Scholar 

  26. Araya R, Eisenthal KB, Yuste R. Dendritic spines linearize the summation of excitatory potentials. Proc Natl Acad Sci. 2006;103:18799–804. https://doi.org/10.1073/pnas.0609225103.

    Article  CAS  PubMed  Google Scholar 

  27. Kwon T, Sakamoto M, Peterka DS, Yuste R. Attenuation of synaptic potentials in dendritic spines. Cell Rep. 2017;20:1100–10. https://doi.org/10.1016/j.celrep.2017.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Svoboda K, Tank DW, Denk W. Direct measurement of coupling between dendritic spines and shafts. Science. 1996;272:716–9. https://doi.org/10.1126/science.272.5262.716.

    Article  CAS  PubMed  Google Scholar 

  29. Murakoshi H, Wang H, Yasuda R. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature. 2011;472:100–4. https://doi.org/10.1038/nature09823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee S-JR, Escobedo-Lozoya Y, Szatmari EM, Yasuda R. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature. 2009;458:299–304. https://doi.org/10.1038/nature07842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meitzen J, Pflepsen KR, Stern CM, Meisel RL, Mermelstein PG. Measurements of neuron soma size and density in rat dorsal striatum, nucleus accumbens core and nucleus accumbens shell: Differences between striatal region and brain hemisphere, but not sex. Neurosci Lett. 2011;487:177–81. https://doi.org/10.1016/j.neulet.2010.10.017.

    Article  CAS  PubMed  Google Scholar 

  32. Ramanathan S, Hanley JJ, Deniau JM, Bolam JP. Synaptic convergence of motor and somatosensory cortical afferents onto GABAergic interneurons in the rat striatum. J Neurosci. 2002;22:8158–69.

    Article  CAS  Google Scholar 

  33. Zheng T, Wilson CJ. Corticostriatal combinatorics: the implications of corticostriatal axonal arborizations. J Neurophysiol. 2002;87:1007–17. https://doi.org/10.1152/jn.00519.2001.

    Article  CAS  PubMed  Google Scholar 

  34. Everitt BJ, Robbins TW. Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci. 2005;8:1481–9. https://doi.org/10.1038/nn1579.

    Article  CAS  PubMed  Google Scholar 

  35. Kalivas P, Volkow N, Seamans J. Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron. 2005;45:647–50. https://doi.org/10.1016/j.neuron.2005.02.005.

    Article  CAS  PubMed  Google Scholar 

  36. Wolf ME. Synaptic mechanisms underlying persistent cocaine craving. Nat Rev Neurosci. 2016. https://doi.org/10.1038/nrn.2016.39.

  37. Wheeler RA, Carelli RM. Dissecting motivational circuitry to understand substance abuse. Neuropharmacology. 2009;56:149–59. https://doi.org/10.1016/j.neuropharm.2008.06.028.

    Article  CAS  PubMed  Google Scholar 

  38. Berke JD. Uncoordinated firing rate changes of striatal fast-spiking interneurons during behavioral task performance. J Neurosci. 2008;28:10075–80. https://doi.org/10.1523/JNEUROSCI.2192-08.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lansink CS, Goltstein PM, Lankelma JV, Pennartz CMA. Fast-spiking interneurons of the rat ventral striatum: temporal coordination of activity with principal cells and responsiveness to reward. Eur J Neurosci. 2010;32:494–508. https://doi.org/10.1111/j.1460-9568.2010.07293.x.

    Article  PubMed  Google Scholar 

  40. Gerfen CR, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32. https://doi.org/10.1126/science.2147780.

    Article  CAS  PubMed  Google Scholar 

  41. Kupchik YM, et al. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci. 2015;18:1230–2. https://doi.org/10.1038/nn.4068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lobo MK, et al. Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science. 2010;330:385–90. https://doi.org/10.1126/science.1188472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. O’Connor EC, et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron. 2015;88:553–64. https://doi.org/10.1016/j.neuron.2015.09.038.

    Article  PubMed  Google Scholar 

  44. Gibson GD et al. Distinct accumbens shell output pathways promote versus prevent relapse to alcohol seeking. Neuron. 2018:1–16. https://doi.org/10.1016/j.neuron.2018.03.033.

  45. Al-Hasani R, et al. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron. 2015;87:1063–77. https://doi.org/10.1016/j.neuron.2015.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pennartz CM, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol. 1994;42:719–61. https://doi.org/10.1016/0301-0082(94)90025-6.

    Article  CAS  PubMed  Google Scholar 

  47. Roitman MF, Wheeler RA, Carelli RM. Nucleus accumbens neurons are innately tuned for rewarding and aversive taste stimuli, encode their predictors, and are linked to motor output. Neuron. 2005;45:587–97. https://doi.org/10.1016/j.neuron.2004.12.055.

    Article  CAS  PubMed  Google Scholar 

  48. Carelli RM, Ijames SG, Crumling AJ. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J Neurosci. 2000;20:4255–66.

    Article  CAS  Google Scholar 

  49. Carelli RM. Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. ‘natural’ reinforcement. Physiol Behav. 2002;76:379–87. https://doi.org/10.1016/s0031-9384(02)00760-6.

    Article  CAS  PubMed  Google Scholar 

  50. Barbera G et al. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron. 2016:1–13. https://doi.org/10.1016/j.neuron.2016.08.037.

  51. Klaus A, et al. The spatiotemporal organization of the striatum encodes action space. Neuron. 2017;95:1171–1180.e1177. https://doi.org/10.1016/j.neuron.2017.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parker JG et al. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature. 2018:1–32. https://doi.org/10.1038/s41586-018-0090-6.

  53. Taha SA, Fields HL. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J Neurosci. 2005;25:1193–202. https://doi.org/10.1523/JNEUROSCI.3975-04.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Taha SA, Fields HL. Inhibitions of nucleus accumbens neurons encode a gating signal for reward-directed behavior. J Neurosci. 2006;26:217–22. https://doi.org/10.1523/JNEUROSCI.3227-05.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krause M, German PW, Taha SA, Fields HL. A pause in nucleus accumbens neuron firing is required to initiate and maintain feeding. J Neurosci. 2010;30:4746–56. https://doi.org/10.1523/JNEUROSCI.0197-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ambroggi F, Ghazizadeh A, Nicola SM, Fields HL. Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. J Neurosci. 2011;31:6820–30. https://doi.org/10.1523/JNEUROSCI.6491-10.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ghazizadeh A, Ambroggi F, Odean N, Fields HL. Prefrontal cortex mediates extinction of responding by two distinct neural mechanisms in accumbens shell. J Neurosci. 2012;32:726–37. https://doi.org/10.1523/JNEUROSCI.3891-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nicola SM, Yun IA, Wakabayashi KT, Fields HL. Cue-evoked firing of nucleus accumbens neurons encodes motivational significance during a discriminative stimulus task. J Neurophysiol. 2004;91:1840–65. https://doi.org/10.1152/jn.00657.2003.

    Article  PubMed  Google Scholar 

  59. Peoples LL, West MO. Phasic firing of single neurons in the rat nucleus accumbens correlated with the timing of intravenous cocaine self-administration. J Neurosci. 1996;16:3459–73.

    Article  CAS  Google Scholar 

  60. Chang JY, Sawyer SF, Lee RS, Woodward DJ. Electrophysiological and pharmacological evidence for the role of the nucleus accumbens in cocaine self-administration in freely moving rats. J Neurosci. 1994;14:1224–44.

    Article  CAS  Google Scholar 

  61. Koya E, et al. Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization. Nat Neurosci. 2009;12:1069–73. https://doi.org/10.1038/nn.2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cruz FC, et al. Role of nucleus accumbens shell neuronal ensembles in context-induced reinstatement of cocaine-seeking. J Neurosci. 2014;34:7437–46. https://doi.org/10.1523/JNEUROSCI.0238-14.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gritton HJ et al. Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nature Neurosci. 2019:1–20, https://doi.org/10.1038/s41593-019-0341-3.

  64. Owen SF, Berke JD, Kreitzer AC. Fast-spiking interneurons supply feedforward control of bursting, calcium, and plasticity for efficient learning. Cell. 2018;172:683–695.e615. https://doi.org/10.1016/j.cell.2018.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Agetsuma M, Hamm JP, Tao K, Fujisawa S, Yuste R. Parvalbumin-positive interneurons regulate neuronal ensembles in visual cortex. Cereb Cortex. 2017;32:1–15. https://doi.org/10.1093/cercor/bhx169.

    Article  Google Scholar 

  66. Morrison DJ, et al. Parvalbumin interneurons constrain the size of the lateral amygdala engram. Neurobiol Learn Mem. 2016;135:91–99. https://doi.org/10.1016/j.nlm.2016.07.007.

    Article  CAS  PubMed  Google Scholar 

  67. Roberts BM, White MG, Patton MH, Chen R, Mathur BN. Ensemble encoding of action speed by striatal fast-spiking interneurons. Brain struct Funct. 2019:1–10. https://doi.org/10.1007/s00429-019-01908-7.

  68. Gage GJ, Stoetzner CR, Wiltschko AB, Berke JD. Selective activation of striatal fast-spiking interneurons during choice execution. Neuron. 2010;67:466–79. https://doi.org/10.1016/j.neuron.2010.06.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pisansky MT et al. Nucleus accumbens fast-spiking interneurons constrain impulsive action. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.07.002.

  70. O’Hare JK, et al. Striatal fast-spiking interneurons selectively modulate circuit output and are required for habitual behavior. eLife. 2017;6:32. https://doi.org/10.7554/eLife.26231.

    Article  Google Scholar 

  71. Kravitz AV, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–6. https://doi.org/10.1038/nature09159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cui G, et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature. 2013;494:238–42. https://doi.org/10.1038/nature11846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Meng C et al. Spectrally resolved fiber photometry for multi-component analysis of brain circuits. Neuron. 2018:1–16. https://doi.org/10.1016/j.neuron.2018.04.012.

  74. Tsutsui-Kimura I, et al. Distinct roles of ventromedial versus ventrolateral striatal medium spiny neurons in reward-oriented behavior. Curr Biol. 2017;27:3042–3048.e3044. https://doi.org/10.1016/j.cub.2017.08.061.

    Article  CAS  PubMed  Google Scholar 

  75. Natsubori A, et al. Ventrolateral striatal medium spiny neurons positively regulate food-incentive, goal-directed behavior independently of D1 and D2 selectivity. J Neurosci. 2017;37:2723–33. https://doi.org/10.1523/JNEUROSCI.3377-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Calipari ES, et al. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci USA. 2016;113:2726–31. https://doi.org/10.1073/pnas.1521238113.

    Article  CAS  PubMed  Google Scholar 

  77. Owesson-White C, et al. Cue-evoked dopamine release rapidly modulates D2 neurons in the nucleus accumbens during motivated behavior. J Neurosci. 2016;36:6011–21. https://doi.org/10.1523/JNEUROSCI.0393-16.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Freund TF. Interneuron diversity series: rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003;26:489–95. https://doi.org/10.1016/S0166-2236(03)00227-3.

    Article  CAS  PubMed  Google Scholar 

  79. Buzsáki G, Chrobak JJ. Temporal structure in spatially organized neuronal ensembles: a role for interneuronal networks. Curr Opin Neurobiol. 1995;5:504–10.

    Article  Google Scholar 

  80. Düzel E, Penny WD, Burgess N. Brain oscillations and memory. Curr Opin Neurobiol. 2010;20:143–9. https://doi.org/10.1016/j.conb.2010.01.004.

    Article  PubMed  Google Scholar 

  81. van der Meer M. Integrating early results on ventral striatal gamma oscillations in the rat. Front Neurosci. 2010:1–12. https://doi.org/10.3389/fnins.2010.00300.

  82. Freund TF, Katona I. Perisomatic inhibition. Neuron. 2007;56:33–42. https://doi.org/10.1016/j.neuron.2007.09.012.

    Article  CAS  PubMed  Google Scholar 

  83. Sohal VS, Zhang F, Yizhar O, Deisseroth K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459:698–702. https://doi.org/10.1038/nature07991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. van der Meer MAA, Redish AD. Low and high gamma oscillations in rat ventral striatum have distinct relationships to behavior, reward, and spiking activity on a learned spatial decision task. Front Integr Neurosci. 2009;3:9. https://doi.org/10.3389/neuro.07.009.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Berke JD, Okatan M, Skurski J, Eichenbaum HB. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron. 2004;43:883–96. https://doi.org/10.1016/j.neuron.2004.08.035.

    Article  CAS  PubMed  Google Scholar 

  86. Sjulson L, Peyrache A, Cumpelik A, Cassataro D, Buzsáki G. Cocaine place conditioning strengthens location-specific hippocampal coupling to the nucleus accumbens. Neuron. 2018:1–15. https://doi.org/10.1016/j.neuron.2018.04.015.

  87. Akam T, Kullmann DM. Oscillations and filtering networks support flexible routing of information. Neuron. 2010;67:308–20. https://doi.org/10.1016/j.neuron.2010.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Akam T, Kullmann DM. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat Rev Neurosci. 2014;15:111–22. https://doi.org/10.1038/nrn3668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koos T, Tepper JM. Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci. 1999;2:467–72. https://doi.org/10.1038/8138.

    Article  CAS  PubMed  Google Scholar 

  90. Vida I, Bartos M, Jonas P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 2006;49:107–17. https://doi.org/10.1016/j.neuron.2005.11.036.

    Article  CAS  PubMed  Google Scholar 

  91. Otaka M, et al. Exposure to cocaine regulates inhibitory synaptic transmission in the nucleus accumbens. J Neurosci. 2013;33:6753–8. https://doi.org/10.1523/JNEUROSCI.4577-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mu P, et al. Exposure to cocaine dynamically regulates the intrinsic membrane excitability of nucleus accumbens neurons. J Neurosci. 2010;30:3689–99. https://doi.org/10.1523/JNEUROSCI.4063-09.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci. 1996;16:2397–410.

    Article  CAS  Google Scholar 

  94. Stern EA, Jaeger D, Wilson CJ. Membrane potential synchrony of simultaneously recorded striatal spiny neurons in vivo. Nature. 1998;394:475–8. https://doi.org/10.1038/28848.

    Article  CAS  PubMed  Google Scholar 

  95. Korpi ER, et al. Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharmacol Rev. 2015;67:872–1004. https://doi.org/10.1124/pr.115.010967.

    Article  CAS  PubMed  Google Scholar 

  96. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci. 1988;85:5274–8. https://doi.org/10.1073/pnas.85.14.5274.

    Article  PubMed  Google Scholar 

  97. Phillips PEM, Stuber GD, Heien MLAV, Wightman RM, Carelli RM. Subsecond dopamine release promotes cocaine seeking. Nature. 2003;422:614–8. https://doi.org/10.1038/nature01476.

    Article  CAS  PubMed  Google Scholar 

  98. Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18:741–52. https://doi.org/10.1038/nrn.2017.130.

    Article  CAS  PubMed  Google Scholar 

  99. Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50. https://doi.org/10.1016/j.neuron.2012.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bracci E, Centonze D, Bernardi G, Calabresi P. Dopamine excites fast-spiking interneurons in the striatum. J Neurophysiol. 2002;87:2190–4. https://doi.org/10.1152/jn.00754.2001.

    Article  CAS  PubMed  Google Scholar 

  101. Wiltschko AB, Pettibone JR, Berke JD. Opposite effects of stimulant and antipsychotic drugs on striatal fast-spiking interneurons. Neuropsychopharmacology. 2010;35:1261–70. https://doi.org/10.1038/npp.2009.226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Koob GF, Volkow ND. Neurocircuitry of addiction. Neuropsychopharmacology. 2010;35:217–38. https://doi.org/10.1038/npp.2009.110.

    Article  PubMed  Google Scholar 

  103. Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016;67:23–50. https://doi.org/10.1146/annurev-psych-122414-033457.

    Article  PubMed  Google Scholar 

  104. Hearing M, Graziane N, Dong Y, Thomas MJ. Opioid and psychostimulant plasticity: targeting overlap in nucleus accumbens glutamate signaling. Trends Pharmacol Sci. 2018:1–19. https://doi.org/10.1016/j.tips.2017.12.004.

  105. Wang J, et al. Cascades of homeostatic dysregulation promote incubation of cocaine craving. J Neurosci. 2018;38:4316–28. https://doi.org/10.1523/JNEUROSCI.3291-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hollander JA, Carelli RM. Abstinence from cocaine self-administration heightens neural encoding of goal-directed behaviors in the accumbens. Neuropsychopharmacology. 2005;30:1464–74. https://doi.org/10.1038/sj.npp.1300748.

    Article  CAS  PubMed  Google Scholar 

  107. Hollander JA, Carelli RM. Cocaine-associated stimuli increase cocaine seeking and activate accumbens core neurons after abstinence. J Neurosci. 2007;27:3535–9. https://doi.org/10.1523/JNEUROSCI.3667-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Guillem K, Ahmed SH, Peoples LL. Escalation of cocaine intake and incubation of cocaine seeking are correlated with dissociable neuronal processes in different accumbens subregions. Biol Psychiatry. 2014;76:31–39. https://doi.org/10.1016/j.biopsych.2013.08.032.

    Article  CAS  PubMed  Google Scholar 

  109. Ghitza UE, Fabbricatore AT, Prokopenko V, Pawlak AP, West MO. Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine. J Neurosci. 2003;23:7239–45.

    Article  CAS  Google Scholar 

  110. Augustin SM, Lovinger DM. Functional relevance of endocannabinoid-dependent synaptic plasticity in the central nervous system. ACS Chem Neurosci. 2018;9:2146–61. https://doi.org/10.1021/acschemneuro.7b00508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kullmann DM, Moreau AW, Bakiri Y, Nicholson E. Plasticity of inhibition. Neuron. 2012;75:951–62. https://doi.org/10.1016/j.neuron.2012.07.030.

    Article  CAS  PubMed  Google Scholar 

  112. Mathur BN, Tanahira C, Tamamaki N, Lovinger DM. Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. Nat Neurosci. 2013;16:1275–83. https://doi.org/10.1038/nn.3478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Grueter BA, Brasnjo G, Malenka RC. Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci. 2010;13:1519–25. https://doi.org/10.1038/nn.2685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Purgianto A, Loweth JA, Miao JJ, Milovanovic M, Wolf ME. Surface expression of GABAA receptors in the rat nucleus accumbens is increased in early but not late withdrawal from extended-access cocaine self-administration. Brain Res. 2016;1642:336–43. https://doi.org/10.1016/j.brainres.2016.04.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ribeiro EA et al. Transcriptional and physiological adaptations in nucleus accumbens somatostatin interneurons that regulate behavioral responses to cocaine. Nature Commun. 2018:1–10. https://doi.org/10.1038/s41467-018-05657-9.

  116. Dobbs LK, et al. Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron. 2016;90:1100–13. https://doi.org/10.1016/j.neuron.2016.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Suska A, Lee BR, Huang YH, Dong Y, Schlüter OM. Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci USA. 2013;110:713–8. https://doi.org/10.1073/pnas.1206287110.

    Article  CAS  PubMed  Google Scholar 

  118. Neumann PA, et al. Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection. Neuropsychopharmacology. 2016;41:2399–410. https://doi.org/10.1038/npp.2016.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Boudreau AC, Reimers JM, Milovanovic M, Wolf ME. Cell surface AMPA receptors in the rat nucleus accumbens increase during cocaine withdrawal but internalize after cocaine challenge in association with altered activation of mitogen-activated protein kinases. J Neurosci. 2007;27:10621–35. https://doi.org/10.1523/JNEUROSCI.2163-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Conrad KL, et al. Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature. 2008;454:118–21. https://doi.org/10.1038/nature06995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pascoli V, et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature. 2014;509:459–64. https://doi.org/10.1038/nature13257.

    Article  CAS  PubMed  Google Scholar 

  122. Dong Y, et al. CREB modulates excitability of nucleus accumbens neurons. Nat Neurosci. 2006;9:475–7. https://doi.org/10.1038/nn1661.

    Article  CAS  PubMed  Google Scholar 

  123. Wright WJ et al. Silent synapses dictate cocaine memory destabilization and reconsolidation. Nature Neurosci. 2020;23:32–46. https://doi.org/10.1038/s41593-019-0537-6.

  124. Huang YH, et al. In vivo cocaine experience generates silent synapses. Neuron. 2009;63:40–47. https://doi.org/10.1016/j.neuron.2009.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lee BR, et al. Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat Neurosci. 2013;16:1644–51. https://doi.org/10.1038/nn.3533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ma Y-Y, et al. Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron. 2014;83:1453–67. https://doi.org/10.1016/j.neuron.2014.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Burton AC et al. Previous cocaine self-administration disrupts reward expectancy encoding in ventral striatum. Neuropsychopharmacology. 2018:1–11. https://doi.org/10.1038/s41386-018-0058-0.

  128. MacAskill AF, Cassel JM, Carter AG. Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nat Neurosci. 2014;17:1198–207. https://doi.org/10.1038/nn.3783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Neumann PA et al. Cocaine-induced synaptic alterations in thalamus to nucleus accumbens projection. Neuropsychopharmacology. 2016. https://doi.org/10.1038/npp.2016.52.

  130. Purgianto A, Weinfeld ME, Wolf ME. Prolonged withdrawal from cocaine self-administration affects prefrontal cortex- and basolateral amygdala-nucleus accumbens core circuits but not accumbens GABAergic local interneurons. Addict Biol. 2016:1–13. https://doi.org/10.1111/adb.12430.

  131. Grewe BF et al. Neural ensemble dynamics underlying a long-term associative memory. Nature. 2017:1–23. https://doi.org/10.1038/nature21682.

  132. Peters AJ, Chen SX, Komiyama T. Emergence of reproducible spatiotemporal activity during motor learning. Nature. 2014;510:263–7. https://doi.org/10.1038/nature13235.

    Article  CAS  PubMed  Google Scholar 

  133. Gawin FH, Kleber HD. Abstinence symptomatology and psychiatric diagnosis in cocaine abusers. Clinical observations. Arch Gen psychiatry. 1986;43:107–13.

    Article  CAS  Google Scholar 

  134. Hayama T, et al. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat Neurosci. 2013;16:1409–16. https://doi.org/10.1038/nn.3496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work was partially supported by NIH grants DA043940 (WJW), DA023206 (YD), DA047861 (YD), DA040620 (YD), and DA044538 (YD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schall, T.A., Wright, W.J. & Dong, Y. Nucleus accumbens fast-spiking interneurons in motivational and addictive behaviors. Mol Psychiatry 26, 234–246 (2021). https://doi.org/10.1038/s41380-020-0683-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0683-y

This article is cited by

Search

Quick links