Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment

Abstract

We describe evidence for dissociable roles of the medial and lateral orbitofrontal cortex (OFC) in major depressive disorder (MDD) from structure, functional activation, functional connectivity, metabolism, and neurochemical systems. The reward-related medial orbitofrontal cortex has lower connectivity and less reward sensitivity in MDD associated with anhedonia symptoms; and the non-reward related lateral OFC has higher functional connectivity and more sensitivity to non-reward/aversive stimuli in MDD associated with negative bias symptoms. Importantly, we propose that conventional antidepressants act to normalize the hyperactive lateral (but not medial) OFC to reduce negative bias in MDD; while other treatments are needed to operate on the medial OFC to reduce anhedonia, with emerging evidence suggesting that ketamine may act in this way. The orbitofrontal cortex is the key cortical region in emotion and reward, and the current review presents much new evidence about the different ways that the medial and lateral OFC are involved in MDD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anatomy and functional specialization of the human medial and lateral OFC.
Fig. 2: Structure abnormalities of the medial and lateral OFC related to depression.
Fig. 3: Disrupted medial and lateral OFC activation in distinct subcomponents of reward-related processing.
Fig. 4: Abnormal resting-state voxel-level functional connectivity of the medial and lateral OFC in patients with major depression.
Fig. 5: Summary of the abnormalities of the medial and lateral orbitofrontal cortex in major depressive disorder.
Fig. 6: Summary of pathological abnormalities in the medial and lateral OFC in response to ketamine and to conventional antidepressant medications such as SSRIs.

Similar content being viewed by others

Data availability

The data that were used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. The Lancet Global H. Mental health matters. Lancet Glob Health. 2020;8:e1352.

    Article  Google Scholar 

  2. Vos T, Lim SSGDaIC. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396:1204–22.

    Article  Google Scholar 

  3. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163:1905–17.

    Article  PubMed  Google Scholar 

  4. Rolls ET. The neuroscience of emotional disorders. Handb Clin Neurol. 2021;183:1–26.

    Article  PubMed  Google Scholar 

  5. Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct. 2023;228:1201–57.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ongür D, Ferry AT, Price JL. Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol. 2003;460:425–49.

    Article  PubMed  Google Scholar 

  7. Kringelbach ML, Rolls ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004;72:341–72.

    Article  PubMed  Google Scholar 

  8. Rolls ET. The Orbitofrontal Cortex. Oxford: Oxford University Press; 2019.

  9. Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10:206–19.

    Article  PubMed  Google Scholar 

  10. Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci. 2005;6:691–702.

    Article  CAS  PubMed  Google Scholar 

  11. Rolls ET, Deco G, Huang CC, Feng J. The human orbitofrontal cortex, vmPFC, and anterior cingulate cortex effective connectome: emotion, memory, and action. Cereb Cortex. 2022;33:330–56.

    Article  PubMed  Google Scholar 

  12. Rolls ET, Deco G, Huang CC, Feng J. Human amygdala compared to orbitofrontal cortex connectivity, and emotion. Prog Neurobiol. 2023;220:102385.

    Article  PubMed  Google Scholar 

  13. Kadohisa M, Rolls ET, Verhagen JV. Neuronal representations of stimuli in the mouth: the primate insular taste cortex, orbitofrontal cortex, and amygdala. Chem Senses. 2005;30:401–19.

    Article  PubMed  Google Scholar 

  14. Rolls ET, Critchley HD, Mason R, Wakeman EA. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J Neurophysiol. 1996;75:1970–81.

    Article  CAS  PubMed  Google Scholar 

  15. Critchley HD, Rolls ET. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J Neurophysiol. 1996;75:1673–86.

    Article  CAS  PubMed  Google Scholar 

  16. Padoa-Schioppa C, Conen KE. Orbitofrontal cortex: A neural circuit for economic decisions. Neuron. 2017;96:736–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Padoa-Schioppa C. Neurobiology of economic choice: a good-based model. Annu Rev Neurosci. 2011;34:333–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Thorpe SJ, Rolls ET, Maddison S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp Brain Res. 1983;49:93–115.

    Article  CAS  PubMed  Google Scholar 

  19. Rosenkilde CE, Bauer RH, Fuster JM. Single unit activity in ventral prefrontal cortex in behaving monkeys. Brain Res. 1981;209:375–94.

    Article  CAS  PubMed  Google Scholar 

  20. Baylis LL, Gaffan D. Amygdalectomy and ventromedial prefrontal ablation produce similar deficits in food choice and in simple object discrimination learning for an unseen reward. Exp Brain Res. 1991;86:617–22.

    Article  CAS  PubMed  Google Scholar 

  21. Noonan MP, Mars RB, Rushworth MF. Distinct roles of three frontal cortical areas in reward-guided behavior. J Neurosci: Off J Soc Neurosci. 2011;31:14399–412.

    Article  CAS  Google Scholar 

  22. Rolls ET, Kringelbach ML, de Araujo IET. Different representations of pleasant and unpleasant odors in the human brain. Eur J Neurosci. 2003;18:695–703.

    Article  PubMed  Google Scholar 

  23. de Araujo IET, Kringelbach ML, Rolls ET, McGlone F. Human cortical responses to water in the mouth, and the effects of thirst. J Neurophysiol. 2003;90:1865–76.

    Article  PubMed  Google Scholar 

  24. de Araujo IET, Kringelbach ML, Rolls ET, Hobden P. The representation of umami taste in the human brain. J Neurophysiol. 2003;90:313–9.

    Article  PubMed  Google Scholar 

  25. Grabenhorst F, Rolls ET. Selective attention to affective value alters how the brain processes taste stimuli. Eur J Neurosci. 2008;27:723–9.

    Article  PubMed  Google Scholar 

  26. Grabenhorst F, Rolls ET, Parris BA, D’Souza A. How the brain represents the reward value of fat in the mouth. Cereb Cortex. 2010;20:1082–91.

    Article  PubMed  Google Scholar 

  27. Kringelbach ML, O’Doherty J, Rolls ET, Andrews C. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex. 2003;13:1064–71.

    Article  CAS  PubMed  Google Scholar 

  28. Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F. Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex. 2003;13:308–17.

    Article  CAS  PubMed  Google Scholar 

  29. McCabe C, Rolls ET, Bilderbeck A, McGlone F. Cognitive influences on the affective representation of touch and the sight of touch in the human brain. Soc, Cogn Affect Neurosci. 2008;3:97–108.

    Article  PubMed  Google Scholar 

  30. Rolls ET, Grabenhorst F, Franco L. Prediction of subjective affective state from brain activations. J Neurophysiol. 2009;101:1294–308.

    Article  PubMed  Google Scholar 

  31. Rolls ET, Grabenhorst F, Parris BA. Warm pleasant feelings in the brain. Neuroimage. 2008;41:1504–13.

    Article  PubMed  Google Scholar 

  32. O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci. 2001;4:95–102.

    Article  PubMed  Google Scholar 

  33. Xie C, Jia T, Rolls ET, Robbins TW, Sahakian BJ, Zhang J, et al. Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:259–69.

    PubMed  Google Scholar 

  34. Rolls ET, Vatansever D, Li Y, Cheng W, Feng J. Rapid Rule-Based Reward Reversal and the Lateral Orbitofrontal Cortex. Cereb Cortex Commun. 2020;1:tgaa087.

    Article  PubMed  PubMed Central  Google Scholar 

  35. O’Doherty J, Winston J, Critchley H, Perrett D, Burt DM, Dolan RJ. Beauty in a smile: the role of medial orbitofrontal cortex in facial attractiveness. Neuropsychologia. 2003;41:147–55.

    Article  PubMed  Google Scholar 

  36. Völlm BA, de Araujo IET, Cowen PJ, Rolls ET, Kringelbach ML, Smith KA, et al. Methamphetamine activates reward circuitry in drug naïve human subjects. Neuropsychopharmacology. 2004;29:1715–22.

    Article  PubMed  Google Scholar 

  37. Kringelbach ML, Rolls ET. Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage. 2003;20:1371–83.

    Article  PubMed  Google Scholar 

  38. Grabenhorst F, Rolls ET. Value, pleasure and choice in the ventral prefrontal cortex. Trends Cogn Sci. 2011;15:56–67.

    Article  PubMed  Google Scholar 

  39. Schuck NW, Cai MB, Wilson RC, Niv Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron. 2016;91:1402–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knudsen EB, Wallis JD. Taking stock of value in the orbitofrontal cortex. Nat Rev Neurosci. 2022;23:428–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rolls ET, Grabenhorst F, Deco G. Decision-making, errors, and confidence in the brain. J Neurophysiol. 2010;104:2359–74.

    Article  PubMed  Google Scholar 

  42. Rolls ET, Grabenhorst F, Deco G. Choice, difficulty, and confidence in the brain. Neuroimage. 2010;53:694–706.

    Article  PubMed  Google Scholar 

  43. Grabenhorst F, Rolls ET, Parris BA. From affective value to decision-making in the prefrontal cortex. Eur J Neurosci. 2008;28:1930–9.

    Article  PubMed  Google Scholar 

  44. Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR, et al. Reward-related reversal learning after surgical excisions in orbitofrontal and dorsolateral prefrontal cortex in humans. J Cogn Neurosci. 2004;16:463–78.

    Article  CAS  PubMed  Google Scholar 

  45. Hornak J, Bramham J, Rolls ET, Morris RG, O’Doherty J, Bullock PR, et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain. 2003;126:1691–712.

    Article  CAS  PubMed  Google Scholar 

  46. Hornak J, Rolls ET, Wade D. Face and voice expression identification in patients with emotional and behavioural changes following ventral frontal lobe damage. Neuropsychologia. 1996;34:247–61.

    Article  CAS  PubMed  Google Scholar 

  47. Fellows LK. Orbitofrontal contributions to value-based decision making: evidence from humans with frontal lobe damage. Ann N. Y Acad Sci. 2011;1239:51–8.

    Article  PubMed  Google Scholar 

  48. Noonan MP, Chau BKH, Rushworth MFS, Fellows LK. Contrasting Effects of Medial and Lateral Orbitofrontal Cortex Lesions on Credit Assignment and Decision-Making in Humans. J Neurosci. 2017;37:7023–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rudebeck PH, Rich EL. Orbitofrontal cortex. Curr Biol. 2018;28:R1083–R8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol. 2022;217:102334.

    Article  PubMed  Google Scholar 

  51. Balleine BW, Leung BK, Ostlund SB. The orbitofrontal cortex, predicted value, and choice. Ann N. Y Acad Sci. 2011;1239:43–50.

    Article  PubMed  Google Scholar 

  52. Barreiros IV, Ishii H, Walton ME, Panayi MC. Defining an orbitofrontal compass: Functional and anatomical heterogeneity across anterior–posterior and medial–lateral axes. Behav Neurosci. 2021;135:165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stalnaker TA, Cooch NK, Schoenbaum G. What the orbitofrontal cortex does not do. Nat Neurosci. 2015;18:620–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rolls ET. Brain Computations and Connectivity. Oxford: Oxford University Press; 2023.

  55. LeDoux J, Brown R, Pine D, Hofmann S. Know thyself: well-being and subjective experience. Cerebrum: the Dana Forum on Brain Science. 2018;2018:cer-01-18.

  56. LeDoux JE. Thoughtful feelings. Curr Biol. 2020;30:R619–R23.

    Article  CAS  PubMed  Google Scholar 

  57. Taschereau-Dumouchel V, Michel M, Lau H, Hofmann SG, LeDoux JE. Putting the “mental” back in “mental disorders”: a perspective from research on fear and anxiety. Mol Psychiatry. 2022;27:1322–30.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Siddiqi SH, Schaper FL, Horn A, Hsu J, Padmanabhan JL, Brodtmann A, et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat Hum Behav. 2021;5:1707–16.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Rolls ET. The roles of the orbitofrontal cortex via the habenula in non-reward and depression, and in the responses of serotonin and dopamine neurons. Neurosci Biobehav Rev. 2017;75:331–4.

    Article  CAS  PubMed  Google Scholar 

  60. Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2022;18:23–32.

  61. Yang Y, Cui Y, Sang K, Dong Y, Ni Z, Ma S, et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature. 2018;554:317–22.

    Article  CAS  PubMed  Google Scholar 

  62. Proulx CD, Hikosaka O, Malinow R. Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci. 2014;17:1146–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rolls ET, Deco G, Huang C-C, Feng J. The connectivity of the human frontal pole cortex, and a theory of its involvement in exploit vs explore. Cereb Cortex. 2023. e-pub ahead of print 21 November 2023; https://doi.org/10.1093/cercor/bhad416.

  64. Rolls ET. A non-reward attractor theory of depression. Neurosci Biobehav Rev. 2016;68:47–58.

    Article  PubMed  Google Scholar 

  65. Cheng W, Rolls ET, Qiu J, Liu W, Tang Y, Huang C-C, et al. Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression. Brain. 2016;139:3296–309.

    Article  PubMed  Google Scholar 

  66. Rolls ET, Cheng W, Du J, Wei D, Qiu J, Dai D, et al. Functional connectivity of the right inferior frontal gyrus and orbitofrontal cortex in depression. Soc Cogn Affect Neurosci. 2020;15:75–86.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Rolls ET, Cheng W, Gong W, Qiu J, Zhou C, Zhang J, et al. Functional connectivity of the anterior cingulate cortex in depression and in health. Cereb Cortex. 2019;29:3617–30.

    Article  PubMed  Google Scholar 

  68. Cheng W, Rolls ET, Ruan H, Feng J. Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry. 2018;75:1052–61.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cheng W, Rolls ET, Qiu J, Yang D, Ruan H, Wei D, et al. Functional connectivity of the precuneus in unmedicated patients with depression. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:1040–9.

    PubMed  Google Scholar 

  70. Cheng W, Rolls ET, Qiu J, Xie X, Wei D, Huang C-C, et al. Increased functional connectivity of the posterior cingulate cortex with the lateral orbitofrontal cortex in depression. Transl Psychiatry. 2018;8:90.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Cheng W, Rolls ET, Qiu J, Xie X, Lyu W, Li Y, et al. Functional connectivity of the human amygdala in health and in depression. Soc Cogn Affect Neurosci. 2018;13:557–68.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Drevets WC. Orbitofrontal cortex function and structure in depression. Ann N. Y Acad Sci. 2007;1121:499–527.

    Article  PubMed  Google Scholar 

  73. Schmaal L, Hibar DP, Sämann PG, Hall GB, Baune BT, Jahanshad N, et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry. 2017;22:900–9.

    Article  CAS  PubMed  Google Scholar 

  74. Fettes P, Peters S, Giacobbe P, Blumberger DM, Downar J. Neural correlates of successful orbitofrontal 1 Hz rTMS following unsuccessful dorsolateral and dorsomedial prefrontal rTMS in major depression: A case report. Brain Stimul. 2017;10:165–7.

    Article  PubMed  Google Scholar 

  75. Feffer K, Fettes P, Giacobbe P, Daskalakis ZJ, Blumberger DM, Downar J. 1Hz rTMS of the right orbitofrontal cortex for major depression: Safety, tolerability and clinical outcomes. Eur Neuropsychopharmacol. 2018;28:109–17.

    Article  CAS  PubMed  Google Scholar 

  76. Rao VR, Sellers KK, Wallace DL, Lee MB, Bijanzadeh M, Sani OG, et al. Direct electrical stimulation of lateral orbitofrontal cortex acutely improves mood in individuals with symptoms of depression. Curr Biol. 2018;28:3893–902. e4

    Article  CAS  PubMed  Google Scholar 

  77. Rajkowska G, Miguel-Hidalgo JJ, Dubey P, Stockmeier CA, Krishnan KRR. Prominent reduction in pyramidal neurons density in the orbitofrontal cortex of elderly depressed patients. Biol Psychiatry. 2005;58:297–306.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085–98.

    Article  CAS  PubMed  Google Scholar 

  79. Bremner JD, Vythilingam M, Vermetten E, Nazeer A, Adil J, Khan S, et al. Reduced volume of orbitofrontal cortex in major depression. Biol Psychiatry. 2002;51:273–9.

    Article  PubMed  Google Scholar 

  80. Lai T, Payne ME, Byrum CE, Steffens DC, Krishnan KR. Reduction of orbital frontal cortex volume in geriatric depression. Biol Psychiatry. 2000;48:971–5.

    Article  CAS  PubMed  Google Scholar 

  81. Grieve SM, Korgaonkar MS, Koslow SH, Gordon E, Williams LM. Widespread reductions in gray matter volume in depression. Neuroimage Clin. 2013;3:332–9.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Egger K, Schocke M, Weiss E, Auffinger S, Esterhammer R, Goebel G, et al. Pattern of brain atrophy in elderly patients with depression revealed by voxel-based morphometry. Psychiatry Res. 2008;164:237–44.

    Article  PubMed  Google Scholar 

  83. MacFall JR, Payne ME, Provenzale JE, Krishnan KR. Medial orbital frontal lesions in late-onset depression. Biol Psychiatry. 2001;49:803–6.

    Article  CAS  PubMed  Google Scholar 

  84. Webb CA, Weber M, Mundy EA, Killgore WDS. Reduced gray matter volume in the anterior cingulate, orbitofrontal cortex and thalamus as a function of mild depressive symptoms: a voxel-based morphometric analysis. Psychol Med. 2014;44:2833–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng W, Rolls E, Gong W, Du J, Zhang J, Zhang X-Y, et al. Sleep duration, brain structure, and psychiatric and cognitive problems in children. Mol Psychiatry. 2021;26:3992–4003.

    Article  PubMed  Google Scholar 

  86. Gong W, Rolls ET, Du J, Feng J, Cheng W. Brain structure is linked to the association between family environment and behavioral problems in children in the ABCD study. Nat Commun. 2021;12:3769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Du J, Rolls ET, Gong W, Cao M, Vatansever D, Zhang J, et al. Association between parental age, brain structure, and behavioral and cognitive problems in children. Mol Psychiatry. 2022;27:967–75.

    Article  PubMed  Google Scholar 

  88. Foland-Ross LC, Sacchet MD, Prasad G, Gilbert B, Thompson PM, Gotlib IH. Cortical thickness predicts the first onset of major depression in adolescence. Int J Dev Neurosci. 2015;46:125–31.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Admon R, Pizzagalli DA. Dysfunctional reward processing in depression. Curr Opin Psychol. 2015;4:114–8.

    Article  PubMed  Google Scholar 

  90. Borsini A, Wallis ASJ, Zunszain P, Pariante CM, Kempton MJ. Characterizing anhedonia: A systematic review of neuroimaging across the subtypes of reward processing deficits in depression. Cogn Affect Behav Neurosci. 2020;20:816–41.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Höflich A, Michenthaler P, Kasper S, Lanzenberger R. Circuit Mechanisms of Reward, Anhedonia, and Depression. Int J Neuropsychopharmacol. 2019;22:105–18.

    Article  PubMed  Google Scholar 

  92. Pizzagalli DA, Roberts AC. Prefrontal cortex and depression. Neuropsychopharmacology. 2022;47:609.

    Article  PubMed  Google Scholar 

  93. Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry. 2021;110:110289.

    Article  CAS  PubMed  Google Scholar 

  94. Der-Avakian A, Markou A. The neurobiology of anhedonia and other reward-related deficits. Trends Neurosci. 2012;35:68–77.

    Article  CAS  PubMed  Google Scholar 

  95. Pizzagalli DA. Toward a better understanding of the mechanisms and pathophysiology of anhedonia: Are we ready for translation? Am J Psychiatry. 2022;179:458–69.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ward J, Lyall LM, Bethlehem RAI, Ferguson A, Strawbridge RJ, Lyall DM, et al. Novel genome-wide associations for anhedonia, genetic correlation with psychiatric disorders, and polygenic association with brain structure. Transl Psychiatry. 2019;9:327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang B, Lin P, Shi H, Öngür D, Auerbach RP, Wang X, et al. Mapping anhedonia-specific dysfunction in a transdiagnostic approach: an ALE meta-analysis. Brain Imaging Behav. 2016;10:920–39.

    Article  PubMed  Google Scholar 

  98. Zhang W-N, Chang S-H, Guo L-Y, Zhang K-L, Wang J. The neural correlates of reward-related processing in major depressive disorder: a meta-analysis of functional magnetic resonance imaging studies. J Affect Disord. 2013;151:531–9.

    Article  PubMed  Google Scholar 

  99. Ubl B, Kuehner C, Kirsch P, Ruttorf M, Diener C, Flor H. Altered neural reward and loss processing and prediction error signalling in depression. Soc Cogn Affect Neurosci. 2015;10:1102–12.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Park IH, Lee BC, Kim J-J, Kim JI, Koo M-S. Effort-based reinforcement processing and functional connectivity underlying amotivation in medicated patients with depression and schizophrenia. J Neurosci. 2017;37:4370–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Forbes EE, Christopher May J, Siegle GJ, Ladouceur CD, Ryan ND, Carter CS, et al. Reward-related decision-making in pediatric major depressive disorder: an fMRI study. J Child Psychol Psychiatry. 2006;47:1031–40.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia. 2019;128:14–43.

    Article  PubMed  Google Scholar 

  103. Eshel N, Roiser JP. Reward and punishment processing in depression. Biol Psychiatry. 2010;68:118–24.

    Article  PubMed  Google Scholar 

  104. Osuch EA, Bluhm RL, Williamson PC, Théberge J, Densmore M, Neufeld RWJ. Brain activation to favorite music in healthy controls and depressed patients. Neuroreport. 2009;20:1204–8.

    Article  PubMed  Google Scholar 

  105. McCabe C, Cowen PJ, Harmer CJ. Neural representation of reward in recovered depressed patients. Psychopharmacology. 2009;205:667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rothkirch M, Tonn J, Köhler S, Sterzer P. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder. Brain. 2017;140:1147–57.

    Article  PubMed  Google Scholar 

  107. Segarra N, Metastasio A, Ziauddeen H, Spencer J, Reinders NR, Dudas RB, et al. Abnormal frontostriatal activity during unexpected reward receipt in depression and schizophrenia: relationship to anhedonia. Neuropsychopharmacology. 2016;41:2001–10.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59:597–604.

    Article  PubMed  Google Scholar 

  109. McCabe C, Woffindale C, Harmer CJ, Cowen PJ. Neural processing of reward and punishment in young people at increased familial risk of depression. Biol Psychiatry. 2012;72:588–94.

    Article  PubMed  Google Scholar 

  110. Tao R, Calley CS, Hart J, Mayes TL, Nakonezny PA, Lu H, et al. Brain activity in adolescent major depressive disorder before and after fluoxetine treatment. Am J Psychiatry. 2012;169:381–8.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Frodl T, Bokde ALW, Scheuerecker J, Lisiecka D, Schoepf V, Hampel H, et al. Functional connectivity bias of the orbitofrontal cortex in drug-free patients with major depression. Biol Psychiatry. 2010;67:161–7.

    Article  PubMed  Google Scholar 

  112. Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: reward, emotion and depression. Brain Commun. 2020;2:fcaa196.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rolls ET, Deco G, Huang CC, Feng J. The human language effective connectome. Neuroimage. 2022;258:119352.

    Article  PubMed  Google Scholar 

  114. Connolly CG, Ho TC, Blom EH, LeWinn KZ, Sacchet MD, Tymofiyeva O, et al. Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. J Affect Disord. 2017;207:86–94.

    Article  PubMed  Google Scholar 

  115. Gao W, Biswal B, Chen S, Wu X, Yuan J. Functional coupling of the orbitofrontal cortex and the basolateral amygdala mediates the association between spontaneous reappraisal and emotional response. Neuroimage. 2021;232:117918.

    Article  PubMed  Google Scholar 

  116. Jin J, Narayanan A, Perlman G, Luking K, DeLorenzo C, Hajcak G, et al. Orbitofrontal cortex activity and connectivity predict future depression symptoms in adolescence. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2:610–8.

    PubMed  PubMed Central  Google Scholar 

  117. Avery JA, Drevets WC, Moseman SE, Bodurka J, Barcalow JC, Simmons WK. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula. Biol Psychiatry. 2014;76:258–66.

    Article  PubMed  Google Scholar 

  118. Long Z, Duan X, Wang Y, Liu F, Zeng L, Zhao J-P, et al. Disrupted structural connectivity network in treatment-naive depression. Prog Neuropsychopharmacol Biol Psychiatry. 2015;56:18–26.

    Article  PubMed  Google Scholar 

  119. Rolls ET, Deco G, Huang CC, Feng J. Prefrontal and somatosensory-motor cortex effective connectivity in humans. Cereb Cortex. 2023;33:4939–63.

    Article  PubMed  Google Scholar 

  120. Baylis LL, Rolls ET, Baylis GC. Afferent connections of the caudolateral orbitofrontal cortex taste area of the primate. Neuroscience. 1995;64:801–12.

    Article  CAS  PubMed  Google Scholar 

  121. Gong L, Yin Y, He C, Ye Q, Bai F, Yuan Y, et al. Disrupted reward circuits is associated with cognitive deficits and depression severity in major depressive disorder. J Psychiatr Res. 2017;84:9–17.

    Article  PubMed  Google Scholar 

  122. Mayberg HS. Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull. 2003;65:193–207.

    Article  PubMed  Google Scholar 

  123. Brody AL, Saxena S, Silverman DH, Alborzian S, Fairbanks LA, Phelps ME, et al. Brain metabolic changes in major depressive disorder from pre- to post-treatment with paroxetine. Psychiatry Res. 1999;91:127–39.

    Article  CAS  PubMed  Google Scholar 

  124. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12:3628–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12:527–44.

    Article  CAS  PubMed  Google Scholar 

  126. Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA Jr. Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol. 2015;29:596–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Xu C, Ma X-M, Chen H-B, Zhou M-H, Qiao H, An S-C. Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7. Neuropharmacology. 2016;109:7–17.

    Article  CAS  PubMed  Google Scholar 

  128. Sargent PA, Kjaer KH, Bench CJ, Rabiner EA, Messa C, Meyer J, et al. Brain serotonin1A receptor binding measured by positron emission tomography with [11C] WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry. 2000;57:174–80.

    Article  CAS  PubMed  Google Scholar 

  129. Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, et al. Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry. 2004;61:765–73.

    Article  CAS  PubMed  Google Scholar 

  130. McCabe C, Mishor Z, Cowen PJ, Harmer CJ. Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol Psychiatry. 2010;67:439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Godlewska BR. Cognitive neuropsychological theory: Reconciliation of psychological and biological approaches for depression. Pharm Ther. 2019;197:38–51.

    Article  CAS  Google Scholar 

  132. Godlewska BR, Harmer CJ. Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment. Psychopharmacology. 2021;238:1265–78.

    Article  CAS  PubMed  Google Scholar 

  133. Aan Het Rot M, Zarate CA Jr, Charney DS, Mathew SJ. Ketamine for depression: where do we go from here? Biol Psychiatry. 2012;72:537–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW, Feder A, et al. The effect of a single dose of intravenous ketamine on suicidal ideation: A systematic review and individual participant data meta-analysis. Am J Psychiatry. 2018;175:150–8.

    Article  PubMed  Google Scholar 

  135. Sterpenich V, Vidal S, Hofmeister J, Michalopoulos G, Bancila V, Warrot D, et al. Increased reactivity of the mesolimbic reward system after ketamine injection in patients with treatment-resistant major depressive disorder. Anesthesiology. 2019;130:923–35.

    Article  CAS  PubMed  Google Scholar 

  136. Mkrtchian A, Evans JW, Kraus C, Yuan P, Kadriu B, Nugent AC, et al. Ketamine modulates fronto-striatal circuitry in depressed and healthy individuals. Mol Psychiatry. 2021;26:3292–301.

    Article  CAS  PubMed  Google Scholar 

  137. Klein ME, Grice AB, Sheth S, Go M, Murrough JW. Pharmacological Treatments for Anhedonia. Curr Top Behav Neurosci. 2022;58:467–89.

    Article  PubMed  Google Scholar 

  138. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and Ketamine Metabolite Pharmacology: Insights into Therapeutic Mechanisms. Pharm Rev. 2018;70:621–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zanos P, Gould TD. Intracellular signaling pathways involved in (S)- and (R)-ketamine antidepressant actions. Biol Psychiatry. 2018;83:2–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry. 2018;23:59–69.

    Article  CAS  PubMed  Google Scholar 

  142. McClintock SM, Husain MM, Wisniewski SR, Nierenberg AA, Stewart JW, Trivedi MH, et al. Residual symptoms in depressed outpatients who respond by 50% but do not remit to antidepressant medication. J Clin Psychopharmacol. 2011;31:180–6.

    Article  PubMed  PubMed Central  Google Scholar 

  143. McMakin DL, Olino TM, Porta G, Dietz LJ, Emslie G, Clarke G, et al. Anhedonia predicts poorer recovery among youth with selective serotonin reuptake inhibitor treatment-resistant depression. J Am Acad Child Adolesc Psychiatry. 2012;51:404–11.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Rizvi SJ, Grima E, Tan M, Rotzinger S, Lin P, McIntyre RS, et al. Treatment-resistant depression in primary care across Canada. Can J Psychiatry. 2014;59:349–57.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Carhart-Harris RL, Roseman L, Bolstridge M, Demetriou L, Pannekoek JN, Wall MB, et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep. 2017;7:13187.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Fitzgerald PB, Hoy KE, Anderson RJ, Daskalakis ZJ. A study of the pattern of response to rTMS treatment in depression. Depress Anxiety. 2016;33:746–53.

    Article  PubMed  Google Scholar 

  147. Prentice A, Kolken Y, Tuttle C, van Neijenhof J, Pitch R, van Oostrom I, et al. 1Hz right orbitofrontal TMS benefits depressed patients unresponsive to dorsolateral prefrontal cortex TMS. Brain Stimul. 2023;16:1572–5.

  148. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry. 2010;67:110–6.

    Article  PubMed  Google Scholar 

  149. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry. 2008;64:461–7.

    Article  PubMed  Google Scholar 

  150. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry. 2010;67:e9–e11.

    Article  PubMed  Google Scholar 

  151. Scangos KW, Khambhati AN, Daly PM, Makhoul GS, Sugrue LP, Zamanian H, et al. Closed-loop neuromodulation in an individual with treatment-resistant depression. Nat Med. 2021;27:1696–700.

    Article  CAS  PubMed  Google Scholar 

  152. Gärtner M, Weigand A, Meiering MS, Weigner D, Carstens L, Keicher C, et al. Region-and time-specific effects of ketamine on cerebral blood flow: a randomized controlled trial. Neuropsychopharmacology. 2023;48:1735–41.

  153. Hamani C, Mayberg H, Stone S, Laxton A, Haber S, Lozano AM. The subcallosal cingulate gyrus in the context of major depression. Biol Psychiatry. 2011;69:301–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the grant from the National Key R&D Program of China (No. 2019YFA0709502 to JF), the grant from Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01 to JF), ZJ Lab, and Shanghai Center for Brain Science and Brain-Inspired Technology, the grant from the 111 Project (No. B18015 to JF). This work was partly supported by the grants from the National Natural Sciences Foundation of China (No. 82071997 to WC) and the Shanghai Rising-Star Program (No. 21QA1408700 to WC). This work was supported by the project from China Postdoctoral Science Foundation (No. 2022M710804 to BZ).

Author information

Authors and Affiliations

Authors

Contributions

BZ, WC, and JF conceived and designed the experiment. BZ drafted the manuscript with contributions from ETR, and comments from XW and CX. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Edmund T. Rolls, Wei Cheng or Jianfeng Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Rolls, E.T., Wang, X. et al. Roles of the medial and lateral orbitofrontal cortex in major depression and its treatment. Mol Psychiatry (2024). https://doi.org/10.1038/s41380-023-02380-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02380-w

Search

Quick links