Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Schizophrenia-associated LRRTM1 regulates cognitive behavior through controlling synaptic function in the mediodorsal thalamus

Abstract

Reduced activity of the mediodorsal thalamus (MD) and abnormal functional connectivity of the MD with the prefrontal cortex (PFC) cause cognitive deficits in schizophrenia. However, the molecular basis of MD hypofunction in schizophrenia is not known. Here, we identified leucine-rich-repeat transmembrane neuronal protein 1 (LRRTM1), a postsynaptic cell-adhesion molecule, as a key regulator of excitatory synaptic function and excitation-inhibition balance in the MD. LRRTM1 is strongly associated with schizophrenia and is highly expressed in the thalamus. Conditional deletion of Lrrtm1 in the MD in adult mice reduced excitatory synaptic function and caused a parallel reduction in the afferent synaptic activity of the PFC, which was reversed by the reintroduction of LRRTM1 in the MD. Our results indicate that chronic reduction of synaptic strength in the MD by targeted deletion of Lrrtm1 functionally disengages the MD from the PFC and may account for cognitive, social, and sensorimotor gating deficits, reminiscent of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conditional knockout of Lrrtm1 in the MD.
Fig. 2: Lrrtm1 deletion in mature MD neurons reduces excitatory but not inhibitory synaptic strength and reduces synaptic levels of AMPAR subunits.
Fig. 3: Lrrtm1 deletion in mature MD neurons impairs cognitive and social behavior and disrupts sensorimotor gating.
Fig. 4: LRRTM1 controls synaptic function in MD relay neurons projecting to PFC.
Fig. 5: Lrrtm1 deletion in the MD reduces afferent synaptic activity in the PFC.

Similar content being viewed by others

References

  1. Goldman-Rakic PS, Porrino LJ. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J Comp Neurol. 1985;242:535–60.

    Article  CAS  PubMed  Google Scholar 

  2. Groenewegen HJ. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience. 1988;24:379–431.

    Article  CAS  PubMed  Google Scholar 

  3. Ray JP, Price JL. The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol. 1993;337:1–31.

    Article  CAS  PubMed  Google Scholar 

  4. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78:69–74.

    Article  PubMed  Google Scholar 

  5. Sherman SM, Guillery RW. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002;357:1695–708.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Byne W, Hazlett EA, Buchsbaum MS, Kemether E. The thalamus and schizophrenia: current status of research. Acta Neuropathol. 2009;117:347–68.

    Article  PubMed  Google Scholar 

  7. Andrews J, Wang L, Csernansky JG, Gado MH, Barch DM. Abnormalities of thalamic activation and cognition in schizophrenia. Am J Psychiatry. 2006;163:463–9.

    Article  PubMed  Google Scholar 

  8. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66:811–22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bailey KR, Mair RG. Lesions of specific and nonspecific thalamic nuclei affect prefrontal cortex-dependent aspects of spatial working memory. Behav Neurosci. 2005;119:410–9.

    Article  PubMed  Google Scholar 

  10. Chudasama Y, Bussey TJ, Muir JL. Effects of selective thalamic and prelimbic cortex lesions on two types of visual discrimination and reversal learning. Eur J Neurosci. 2001;14:1009–20.

    Article  CAS  PubMed  Google Scholar 

  11. Hunt PR, Aggleton JP. Neurotoxic lesions of the dorsomedial thalamus impair the acquisition but not the performance of delayed matching to place by rats: a deficit in shifting response rules. J Neurosci. 1998;18:10045–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Woodward ND, Karbasforoushan H, Heckers S. Thalamocortical dysconnectivity in schizophrenia. Am J Psychiatry. 2012;169:1092–9.

    Article  PubMed  Google Scholar 

  13. Parnaudeau S, O’Neill PK, Bolkan SS, Ward RD, Abbas AI, Roth BL, et al. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron. 2013;77:1151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry. 2015;77:445–53.

    Article  PubMed  Google Scholar 

  15. Collins DP, Anastasiades PG, Marlin JJ, Carter AG. Reciprocal circuits linking the prefrontal cortex with dorsal and ventral thalamic nuclei. Neuron. 2018;98:366–79.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Delevich K, Tucciarone J, Huang ZJ, Li B. The mediodorsal thalamus drives feedforward inhibition in the anterior cingulate cortex via parvalbumin interneurons. J Neurosci. 2015;35:5743–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crandall SR, Cruikshank SJ, Connors BW. A corticothalamic switch: controlling the thalamus with dynamic synapses. Neuron. 2015;86:768–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Laurén J, Airaksinen MS, Saarma M, Timmusk Tõ. A novel gene family encoding leucine-rich repeat transmembrane proteins differentially expressed in the nervous system. Genomics. 2003;81:411–21.

    Article  PubMed  Google Scholar 

  19. Sjostedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori, C et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020;367:1090–108.

    Article  Google Scholar 

  20. Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, et al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry. 2007;12:1129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, et al. An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron. 2009;61:734–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siddiqui TJ, Craig AM. Synaptic organizing complexes. Curr Opin Neurobiol. 2011;21:132–43.

    Article  CAS  PubMed  Google Scholar 

  23. Bhouri M, Morishita W, Temkin P, Goswami D, Kawabe H, Brose N, et al. Deletion of LRRTM1 and LRRTM2 in adult mice impairs basal AMPA receptor transmission and LTP in hippocampal CA1 pyramidal neurons. Proc Natl Acad Sci USA. 2018;115:E5382–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schroeder A, Vanderlinden J, Vints K, Ribeiro LF, Vennekens KM, Gounko NV, et al. A modular organization of LRR protein-mediated synaptic adhesion defines synapse identity. Neuron. 2018;99:329–44.e7.

    Article  CAS  PubMed  Google Scholar 

  25. Takashima N, Odaka YS, Sakoori K, Akagi T, Hashikawa T, Morimura N, et al. Impaired cognitive function and altered hippocampal synapse morphology in mice lacking Lrrtm1, a gene associated with schizophrenia. PLoS ONE. 2011;6:e22716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roppongi RT, Dhume SH, Padmanabhan N, Silwal P, Zahra N, Karimi B, et al. LRRTMs organize synapses through differential engagement of neurexin and PTPsigma. Neuron 2020;106:108–125.e12.

    Article  CAS  PubMed  Google Scholar 

  27. Brucato N, DeLisi LE, Fisher SE, Francks C. Hypomethylation of the paternally inherited LRRTM1 promoter linked to schizophrenia. Am J Med Genet B Neuropsychiatr Genet. 2014;165B:555–63.

    Article  PubMed  Google Scholar 

  28. Leach EL, Prefontaine G, Hurd PL, Crespi BJ. The imprinted gene LRRTM1 mediates schizotypy and handedness in a nonclinical population. J Hum Genet. 2014;59:332–6.

    Article  CAS  PubMed  Google Scholar 

  29. Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM. LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci. 2010;30:7495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu Z, Xiao X, Zhang Z, Li M. Genetic insights and neurobiological implications from NRXN1 in neuropsychiatric disorders. Mol Psychiatry. 2019;24:1400–14.

    Article  PubMed  Google Scholar 

  31. Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455:903–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gauthier J, Siddiqui TJ, Huashan P, Yokomaku D, Hamdan FF, Champagne N, et al. Truncating mutations in NRXN2 and NRXN1 in autism spectrum disorders and schizophrenia. Hum Genet. 2011;130:563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Voikar V, Kulesskaya N, Laakso T, Lauren J, Strittmatter SM, Airaksinen MS. LRRTM1-deficient mice show a rare phenotype of avoiding small enclosures—a tentative mouse model for claustrophobia-like behaviour. Behav Brain Res. 2013;238:69–78.

    Article  CAS  PubMed  Google Scholar 

  34. Monavarfeshani A, Stanton G, Van Name J, Su K, Mills WA, 3rd, Swilling K, et al. LRRTM1 underlies synaptic convergence in visual thalamus. Elife 2018;7:e33498.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ting JT, Daigle TL, Chen Q, Feng G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol Biol. 2014;1183:221–42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Siddiqui TJ, Tari PK, Connor SA, Zhang P, Dobie FA, She K, et al. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. Neuron. 2013;79:680–95.

    Article  CAS  PubMed  Google Scholar 

  37. Tanabe Y, Naito Y, Vasuta C, Lee AK, Soumounou Y, Linhoff MW, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2alpha. Nat Commun. 2017;8:408.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deacon RM, Thomas CL, Rawlins JN, Morley BJ. A comparison of the behavior of C57BL/6 and C57BL/10 mice. Behav Brain Res. 2007;179:239–47.

    Article  CAS  PubMed  Google Scholar 

  39. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, et al. Object recognition test in mice. Nat Protoc. 2013;8:2531–7.

    Article  CAS  PubMed  Google Scholar 

  41. Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J & Woodgett JR. Assessment of social interaction behaviors. J Vis Exp. 2011:2473.

  42. Adlimoghaddam A, Snow WM, Stortz G, Perez C, Djordjevic J, Goertzen AL, et al. Regional hypometabolism in the 3xTg mouse model of Alzheimer’s disease. Neurobiol Dis. 2019;127:264–77.

    Article  CAS  PubMed  Google Scholar 

  43. Bomkamp C, Padmanabhan N, Karimi B, Ge Y, Chao JT, Loewen CJR, et al. Mechanisms of PTPsigma-mediated presynaptic differentiation. Front Synaptic Neurosci. 2019;11:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuroda M, Yokofujita J, Murakami K. An ultrastructural study of the neural circuit between the prefrontal cortex and the mediodorsal nucleus of the thalamus. Prog Neurobiol. 1998;54:417–58.

    Article  CAS  PubMed  Google Scholar 

  45. Ouhaz Z, Ba-M’hamed S, Mitchell AS, Elidrissi A, Bennis M. Behavioral and cognitive changes after early postnatal lesions of the rat mediodorsal thalamus. Behav Brain Res. 2015;292:219–32.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitchell AS, Dalrymple-Alford JC. Lateral and anterior thalamic lesions impair independent memory systems. Learn Mem. 2006;13:388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amann LC, Gandal MJ, Halene TB, Ehrlichman RS, White SL, McCarren HS, et al. Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull. 2010;83:147–61.

    Article  PubMed  Google Scholar 

  48. Buchholz VN, Jensen O, Medendorp WP. Different roles of alpha and beta band oscillations in anticipatory sensorimotor gating. Front Hum Neurosci. 2014;8:446.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Engel AK, Fries P. Beta-band oscillations—signalling the status quo? Curr Opin Neurobiol. 2010;20:156–65.

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell AS, Sherman SM, Sommer MA, Mair RG, Vertes RP, Chudasama Y. Advances in understanding mechanisms of thalamic relays in cognition and behavior. J Neurosci. 2014;34:15340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hazlett EA, Buchsbaum MS, Zhang J, Newmark RE, Glanton CF, Zelmanova Y, et al. Frontal-striatal-thalamic mediodorsal nucleus dysfunction in schizophrenia-spectrum patients during sensorimotor gating. Neuroimage. 2008;42:1164–77.

    Article  PubMed  Google Scholar 

  52. Braff DL, Geyer MA. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry. 1990;47:181–8.

    Article  CAS  PubMed  Google Scholar 

  53. Paylor R, Crawley JN. Inbred strain differences in prepulse inhibition of the mouse startle response. Psychopharmacology. 1997;132:169–80.

    Article  CAS  PubMed  Google Scholar 

  54. Getting PA. Understanding central pattern generators. Neurobiol Vertebr Locomot. 1986:231–44.

  55. Stoessl AJ. Glucose utilization: still in the synapse. Nat Neurosci. 2017;20:382–4.

    Article  CAS  PubMed  Google Scholar 

  56. Mitelman SA, Byne W, Kemether EM, Hazlett EA, Buchsbaum MS. Metabolic disconnection between the mediodorsal nucleus of the thalamus and cortical Brodmann’s areas of the left hemisphere in schizophrenia. Am J Psychiatry. 2005;162:1733–5.

    Article  PubMed  Google Scholar 

  57. Block AE, Dhanji H, Thompson-Tardif SF, Floresco SB. Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting. Cereb Cortex. 2007;17:1625–36.

    Article  PubMed  Google Scholar 

  58. Floresco SB, Braaksma DN, Phillips AG. Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze. J Neurosci. 1999;19:11061–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sudhof TC. Synaptic neurexin complexes: a molecular code for the logic of neural circuits. Cell. 2017;171:745–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Wit J, O’Sullivan ML, Savas JN, Condomitti G, Caccese MC, Vennekens KM, et al. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. Neuron. 2013;79:696–711.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sinha R, Siddiqui TJ, Padmanabhan N, Wallin J, Zhang C, Karimi B, et al. LRRTM4: a novel regulator of presynaptic inhibition and ribbon synapse arrangements of retinal bipolar cells. Neuron 2020;105:1007–17.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aoto J, Foldy C, Ilcus SM, Tabuchi K, Sudhof TC. Distinct circuit-dependent functions of presynaptic neurexin-3 at GABAergic and glutamatergic synapses. Nat Neurosci. 2015;18:997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen LY, Jiang M, Zhang B, Gokce O, Sudhof TC. Conditional deletion of all neurexins defines diversity of essential synaptic organizer functions for neurexins. Neuron. 2017;94:611–25.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang B, Chen LY, Liu X, Maxeiner S, Lee SJ, Gokce O, et al. Neuroligins sculpt cerebellar purkinje-cell circuits by differential control of distinct classes of synapses. Neuron. 2015;87:781–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Byne W, Buchsbaum MS, Kemether E, Hazlett EA, Shinwari A, Mitropoulou V, et al. Magnetic resonance imaging of the thalamic mediodorsal nucleus and pulvinar in schizophrenia and schizotypal personality disorder. Arch Gen Psychiatry. 2001;58:133–40.

    Article  CAS  PubMed  Google Scholar 

  66. Weinberger DR, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci. 1996;351:1495–503.

    Article  CAS  PubMed  Google Scholar 

  67. Watanabe Y, Funahashi S. Thalamic mediodorsal nucleus and working memory. Neurosci Biobehav Rev. 2012;36:134–42.

    Article  PubMed  Google Scholar 

  68. Liang J, Xu W, Hsu YT, Yee AX, Chen L, Sudhof TC. Conditional neuroligin-2 knockout in adult medial prefrontal cortex links chronic changes in synaptic inhibition to cognitive impairments. Mol Psychiatry. 2015;20:850–9.

    Article  CAS  PubMed  Google Scholar 

  69. Boulougouris V, Dalley JW, Robbins TW. Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. Behav Brain Res. 2007;179:219–28.

    Article  PubMed  Google Scholar 

  70. Schoenbaum G, Nugent SL, Saddoris MP, Setlow B. Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport. 2002;13:885–90.

    Article  PubMed  Google Scholar 

  71. Leeson VC, Robbins TW, Matheson E, Hutton SB, Ron MA, Barnes TR, et al. Discrimination learning, reversal, and set-shifting in first-episode schizophrenia: stability over six years and specific associations with medication type and disorganization syndrome. Biol Psychiatry. 2009;66:586–93.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73:204–15.

    Article  PubMed  Google Scholar 

  73. Meador-Woodruff JH, Clinton SM, Beneyto M, McCullumsmith RE. Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Ann N Y Acad Sci. 2003;1003:75–93.

    Article  CAS  PubMed  Google Scholar 

  74. Hammond JC, McCullumsmith RE, Funk AJ, Haroutunian V, Meador-Woodruff JH. Evidence for abnormal forward trafficking of AMPA receptors in frontal cortex of elderly patients with schizophrenia. Neuropsychopharmacology. 2010;35:2110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ibrahim HM, Hogg AJ Jr., Healy DJ, Haroutunian V, Davis KL, Meador-Woodruff JH. Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. Am J Psychiatry. 2000;157:1811–23.

    Article  CAS  PubMed  Google Scholar 

  76. Sodhi MS, Simmons M, McCullumsmith R, Haroutunian V, Meador-Woodruff JH. Glutamatergic gene expression is specifically reduced in thalamocortical projecting relay neurons in schizophrenia. Biol Psychiatry. 2011;70:646–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from CIHR (MOP-142209 to T.J.S., MOP-125901 to M.F.J. and MOP-89758 to G.J.K.), NSERC (RGPIN-2015-05994 to T.J.S., RGPIN-05477-2017 to M.F.J. and RGPIN-2016-05964 J.H.K.), Research Manitoba (to T.J.S. and J.H.K.) and Alzheimer’s Society of Canada (to M.F.J.).

Author information

Authors and Affiliations

Authors

Contributions

T.J.S. conceived the research; B.K. and T.J.S. designed the research; B.K. performed the bulk of the experiments and analysis (85%), P.S., S.B., N.P., S.D., D.Z., and N.Z. contributed to the experiments and analysis; M.F.J. and J.W.C. advised on electrophysiology experiments; and G.K. advised on the behavior experiments; J.H.K. supervised the FDG-PET experiments; B.K. and T.J.S. wrote the paper. All authors read and approved the paper.

Corresponding author

Correspondence to Tabrez J. Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, B., Silwal, P., Booth, S. et al. Schizophrenia-associated LRRTM1 regulates cognitive behavior through controlling synaptic function in the mediodorsal thalamus. Mol Psychiatry 26, 6912–6925 (2021). https://doi.org/10.1038/s41380-021-01146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01146-6

This article is cited by

Search

Quick links