Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders?

Abstract

Addictive disorders have been much investigated and many studies have underlined the role of environmental factors such as social interaction in the vulnerability to and maintenance of addictive behaviors. Research on addiction pathophysiology now suggests that certain behavioral disorders are addictive, one example being food addiction. Yet, despite the growing body of knowledge on addiction, it is still unknown why only some of the individuals exposed to a drug become addicted to it. This observation has prompted the consideration of genetic heritage, neurodevelopmental trajectories, and gene-environment interactions in addiction vulnerability. Prader–Willi syndrome (PWS) is a rare neurodevelopmental disorder in which children become addicted to food and show early social impairment. PWS is caused by the deficiency of imprinted genes located on the 15q11–q13 chromosome. Among them, the SNORD116 gene was identified as the minimal gene responsible for the PWS phenotype. Several studies have also indicated the role of the Snord116 gene in animal and cellular models to explain PWS pathophysiology and phenotype (including social impairment and food addiction). We thus present here the evidence suggesting the potential involvement of the SNORD116 gene in addictive disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representation of the major maternally imprinted genes in the 15q11-q13 chromosomal Prader-Willi region.
Fig. 2: Representation of the common dysfunctions implicated in Prader-Willi Syndrome and addictive disorders and the proposed mechanisms of action of the SNORD116 gene.

Similar content being viewed by others

References

  1. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Potenza MN. Should addictive disorders include non-substance-related conditions? Addiction. 2006;101:142–51.

    Article  PubMed  Google Scholar 

  3. Randolph TG. The descriptive features of food addiction; addictive eating and drinking. Q J Stud Alcohol. 1956;17:198–224.

    Article  CAS  PubMed  Google Scholar 

  4. Lindgren E, Gray K, Miller G, Tyler R, Wiers CE, Volkow ND, et al. Food addiction: a common neurobiological mechanism with drug abuse. Front Biosci. 2018;23:811–36.

    Article  CAS  Google Scholar 

  5. Xiao L, Priest MF, Kozorovitskiy Y. Oxytocin functions as a spatiotemporal filter for excitatory synaptic inputs to VTA dopamine neurons. eLife. 2018;7:e33892.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Colantuoni C, Rada P, McCarthy J, Patten C, Avena NM, Chadeayne A, et al. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes Res. 2002;10:478–88.

    Article  CAS  PubMed  Google Scholar 

  7. Avena NM, Bocarsly ME, Hoebel BG. Animal models of sugar and fat bingeing: relationship to food addiction and increased body weight. Methods Mol Biol. 2012;829:351–65.

    Article  CAS  PubMed  Google Scholar 

  8. Cabral A, López Soto EJ, Epelbaum J, Perelló M. Is ghrelin synthesized in the central nervous system? Int J Mol Sci. 2017;18:638.

    Article  PubMed Central  CAS  Google Scholar 

  9. Jerlhag E. Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol. 2008;13:358–63.

    Article  CAS  PubMed  Google Scholar 

  10. Leggio L, Ferrulli A, Cardone S, Nesci A, Miceli A, Malandrino N, et al. Ghrelin system in alcohol-dependent subjects: role of plasma ghrelin levels in alcohol drinking and craving. Addict Biol. 2012;17:452–64.

    Article  CAS  PubMed  Google Scholar 

  11. Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, et al. Requirement of central ghrelin signaling for alcohol reward. Proc Natl Acad Sci USA. 2009;106:11318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jerlhag E, Engel JA. Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend. 2011;117:126–31.

    Article  CAS  PubMed  Google Scholar 

  13. Jerlhag E, Egecioglu E, Dickson SL, Engel JA. Ghrelin receptor antagonism attenuates cocaine- and amphetamine-induced locomotor stimulation, accumbal dopamine release, and conditioned place preference. Psychopharmacology. 2010;211:415–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Addolorato G, Capristo E, Leggio L, Ferrulli A, Abenavoli L, Malandrino N, et al. Relationship between ghrelin levels, alcohol craving, and nutritional status in current alcoholic patients. Alcohol Clin Exp Res. 2006;30:1933–7.

    Article  CAS  PubMed  Google Scholar 

  15. Koopmann A, von der Goltz C, Grosshans M, Dinter C, Vitale M, Wiedemann K, et al. The association of the appetitive peptide acetylated ghrelin with alcohol craving in early abstinent alcohol dependent individuals. Psychoneuroendocrinology. 2012;37:980–6.

    Article  CAS  PubMed  Google Scholar 

  16. Panagopoulos VN, Ralevski E. The role of ghrelin in addiction: a review. Psychopharmacology. 2014;231:2725–40.

    Article  CAS  PubMed  Google Scholar 

  17. Landgren S, Jerlhag E, Zetterberg H, Gonzalez-Quintela A, Campos J, Olofsson U, et al. Association of pro-ghrelin and GHS-R1A gene polymorphisms and haplotypes with heavy alcohol use and body mass. Alcohol Clin Exp Res. 2008;32:2054–61.

    Article  CAS  PubMed  Google Scholar 

  18. Strathearn L, Fonagy P, Amico J, Montague PR. Adult attachment predicts maternal brain and oxytocin response to infant cues. Neuropsychopharmacology. 2009;34:2655–66.

    Article  CAS  PubMed  Google Scholar 

  19. Strathearn L, Mertens CE, Mayes L, Rutherford H, Rajhans P, Xu G, et al. Pathways relating the neurobiology of attachment to drug addiction. Front Psychiatry. 2019;10:737.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bora E, Zorlu N. Social cognition in alcohol use disorder: a meta-analysis. Addict Abingdon Engl. 2017;112:40–8.

    Article  Google Scholar 

  21. Kornreich C. Commentary on Bora & Zorlu (2017): Social cognition deficits in addiction-an attachment problem? Addict Abingdon Engl. 2017;112:49–50.

    Article  Google Scholar 

  22. Nader MA, Banks ML. Environmental modulation of drug taking: nonhuman primate models of cocaine abuse and PET neuroimaging. Neuropharmacology. 2014;76:510–7.

    Article  CAS  PubMed  Google Scholar 

  23. Walter M, Gerhard U, Duersteler-MacFarland KM, Weijers H-G, Boening J, Wiesbeck GA. Social factors but not stress-coping styles predict relapse in detoxified alcoholics. Neuropsychobiology. 2006;54:100–6.

    Article  PubMed  Google Scholar 

  24. Havassy BE, Hall SM, Wasserman DA. Social support and relapse: commonalities among alcoholics, opiate users, and cigarette smokers. Addict Behav. 1991;16:235–46.

    Article  CAS  PubMed  Google Scholar 

  25. Stoop R. Neuromodulation by oxytocin and vasopressin. Neuron. 2012;76:142–59.

    Article  CAS  PubMed  Google Scholar 

  26. Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89:1291–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dölen G, Darvishzadeh A, Huang KW, Malenka RC. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature. 2013;501:179–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Smearman EL, Almli LM, Conneely KN, Brody GH, Sales JM, Bradley B, et al. Oxytocin receptor genetic and epigenetic variation: association with child abuse and adult psychiatric symptoms. Child Dev. 2016;87:122–34.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL. Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol. 1989;416:303–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci. 2002;3:728–39.

    Article  CAS  PubMed  Google Scholar 

  31. Tyzio R, Cossart R, Khalilov I, Minlebaev M, Hübner CA, Represa A, et al. Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science. 2006;314:1788–92.

    Article  CAS  PubMed  Google Scholar 

  32. Dubrovsky B, Harris J, Gijsbers K, Tatarinov A. Oxytocin induces long-term depression on the rat dentate gyrus: possible ATPase and ectoprotein kinase mediation. Brain Res Bull. 2002;58:141–7.

    Article  CAS  PubMed  Google Scholar 

  33. Gur R, Tendler A, Wagner S. Long-term social recognition memory is mediated by oxytocin-dependent synaptic plasticity in the medial amygdala. Biol Psychiatry. 2014;76:377–86.

    Article  CAS  PubMed  Google Scholar 

  34. Debiec J, Sullivan RM. The neurobiology of safety and threat learning in infancy. Neurobiol Learn Mem. 2017;143:49–58.

    Article  PubMed  Google Scholar 

  35. Chambers RA, Wallingford SC. On mourning and recovery: integrating stages of grief and change toward a neuroscience-based model of attachment adaptation in addiction treatment. Psychodyn Psychiatry. 2017;45:451–73.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tops M, Koole SL, IJzerman H, Buisman-Pijlman FTA. Why social attachment and oxytocin protect against addiction and stress: insights from the dynamics between ventral and dorsal corticostriatal systems. Pharm Biochem Behav. 2014;119:39–48.

    Article  CAS  Google Scholar 

  37. Wismer Fries AB, Ziegler TE, Kurian JR, Jacoris S, Pollak SD. Early experience in humans is associated with changes in neuropeptides critical for regulating social behavior. Proc Natl Acad Sci USA. 2005;102:17237–40.

    Article  PubMed  CAS  Google Scholar 

  38. McCrory EJ, Mayes L. Understanding addiction as a developmental disorder: an argument for a developmentally informed multilevel approach. Curr Addict Rep. 2015;2:326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buisman-Pijlman FTA, Sumracki NM, Gordon JJ, Hull PR, Carter CS, Tops M. Individual differences underlying susceptibility to addiction: role for the endogenous oxytocin system. Pharm Biochem Behav. 2014;119:22–38.

    Article  CAS  Google Scholar 

  40. Young KA, Liu Y, Gobrogge KL, Wang H, Wang Z. Oxytocin reverses amphetamine-induced deficits in social bonding: evidence for an interaction with nucleus accumbens dopamine. J Neurosci. 2014;34:8499–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bowen MT, Neumann ID. Rebalancing the addicted brain: oxytocin interference with the neural substrates of addiction. Trends Neurosci. 2017;40:691–708.

    Article  CAS  PubMed  Google Scholar 

  42. Bowen MT, Carson DS, Spiro A, Arnold JC, McGregor IS. Adolescent oxytocin exposure causes persistent reductions in anxiety and alcohol consumption and enhances sociability in rats. PloS ONE. 2011;6:e27237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pedersen CA. Oxytocin, tolerance, and the dark side of addiction. Int Rev Neurobiol. 2017;136:239–74.

    Article  CAS  PubMed  Google Scholar 

  44. Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci. 2015;9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466441/.

  45. Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji DJ, et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain Res Mol Brain Res. 1997;48:23–9.

    Article  CAS  PubMed  Google Scholar 

  46. Kandel DB, Huang FY, Davies M. Comorbidity between patterns of substance use dependence and psychiatric syndromes. Drug Alcohol Depend. 2001;64:233–41.

    Article  CAS  PubMed  Google Scholar 

  47. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmed SH, Lutjens R, van der Stap LD, Lekic D, Romano-Spica V, Morales M, et al. Gene expression evidence for remodeling of lateral hypothalamic circuitry in cocaine addiction. Proc Natl Acad Sci USA. 2005;102:11533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Silva SM, Madeira MD, Ruela C, Paula-Barbosa MM. Prolonged alcohol intake leads to irreversible loss of vasopressin and oxytocin neurons in the paraventricular nucleus of the hypothalamus. Brain Res. 2002;925:76–88.

    Article  CAS  PubMed  Google Scholar 

  50. Swaab DF, Purba JS, Hofman MA. Alterations in the hypothalamic paraventricular nucleus and its oxytocin neurons (putative satiety cells) in Prader-Willi syndrome: a study of five cases. J Clin Endocrinol Metab. 1995;80:573–9.

    CAS  PubMed  Google Scholar 

  51. Lukoshe A, Hokken-Koelega AC, van der Lugt A, White T. Reduced cortical complexity in children with Prader-Willi syndrome and its association with cognitive impairment and developmental delay. PloS ONE. 2014;9:e107320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lukoshe A, Dijk SE van, Bosch GE van den, Lugt A van der, White T, Hokken-Koelega AC. Altered functional resting-state hypothalamic connectivity and abnormal pituitary morphology in children with Prader-Willi syndrome. J Neurodev Disord. 2017;9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356363/.

  53. Elena G, Bruna C, Benedetta M, Stefania DC, Giuseppe C. Prader-willi syndrome: clinical aspects. J Obes. 2012;2012:473941.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Salles J, Lacassagne E, Benvegnu G, Berthoumieu SÇ, Franchitto N, Tauber M. The RDoC approach for translational psychiatry: could a genetic disorder with psychiatric symptoms help fill the matrix? The example of Prader-Willi syndrome. Transl Psychiatry. 2020;10:274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tauber M, Boulanouar K, Diene G, Çabal-Berthoumieu S, Ehlinger V, Fichaux-Bourin P, et al. The use of oxytocin to improve feeding and social skills in infants with Prader-Willi syndrome. Pediatrics. 2017;139:e20162976.

    Article  PubMed  Google Scholar 

  56. Holland AJ, Treasure J, Coskeran P, Dallow J, Milton N, Hillhouse E. Measurement of excessive appetite and metabolic changes in Prader-Willi syndrome. Int J Obes Relat Metab Disord. 1993;17:527–32.

    CAS  PubMed  Google Scholar 

  57. Fieldstone A, Zipf WB, Sarter MF, Berntson GG. Food intake in Prader-Willi syndrome and controls with obesity after administration of a benzodiazepine receptor agonist. Obes Res. 1998;6:29–33.

    Article  CAS  PubMed  Google Scholar 

  58. Tauber M, Diene G, Mimoun E, Çabal-Berthoumieu S, Mantoulan C, Molinas C, et al. Prader-Willi syndrome as a model of human hyperphagia. Front Horm Res. 2014;42:93–106.

    Article  PubMed  Google Scholar 

  59. Adams RC, Sedgmond J, Maizey L, Chambers CD, Lawrence NS. Food addiction: implications for the diagnosis and treatment of overeating. Nutrients. 2019;11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770567/.

  60. Tauber M, Coupaye M, Diene G, Molinas C, Valette M, Beauloye V. Prader-Willi syndrome: a model for understanding the ghrelin system. J Neuroendocrinol. 2019;31:e12728.

    Article  PubMed  CAS  Google Scholar 

  61. Beauloye V, Diene G, Kuppens R, Zech F, Winandy C, Molinas C, et al. High unacylated ghrelin levels support the concept of anorexia in infants with prader-willi syndrome. Orphanet J Rare Dis. 2016;11:56.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Feigerlová E, Diene G, Conte-Auriol F, Molinas C, Gennero I, Salles J-P, et al. Hyperghrelinemia precedes obesity in Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93:2800–5.

    Article  PubMed  CAS  Google Scholar 

  63. Schaller F, Watrin F, Sturny R, Massacrier A, Szepetowski P, Muscatelli F. A single postnatal injection of oxytocin rescues the lethal feeding behaviour in mouse newborns deficient for the imprinted Magel2 gene. Hum Mol Genet. 2010;19:4895–905.

    Article  CAS  PubMed  Google Scholar 

  64. Bittel DC, Kibiryeva N, Sell SM, Strong TV, Butler MG. Whole genome microarray analysis of gene expression in Prader–Willi syndrome. Am J Med Genet A. 2007;143A:430–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miller JL, Tamura R, Butler MG, Kimonis V, Sulsona C, Gold J-A, et al. Oxytocin treatment in children with Prader-Willi syndrome: a double-blind, placebo-controlled, crossover study. Am J Med Genet A. 2017;173:1243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lei M, Mitsuhashi S, Miyake N, Ohta T, Liang D, Wu L, et al. Translocation breakpoint disrupting the host SNHG14 gene but not coding genes or snoRNAs in typical Prader-Willi syndrome. J Hum Genet. 2019;64:647–52.

    Article  CAS  PubMed  Google Scholar 

  67. Bieth E, Eddiry S, Gaston V, Lorenzini F, Buffet A, Conte Auriol F, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi syndrome. Eur J Hum Genet. 2015;23:252–5.

    Article  CAS  PubMed  Google Scholar 

  68. Burnett LC, Hubner G, LeDuc CA, Morabito MV, Carli JFM, Leibel RL. Loss of the imprinted, non-coding Snord116 gene cluster in the interval deleted in the Prader Willi syndrome results in murine neuronal and endocrine pancreatic developmental phenotypes. Hum Mol Genet. 2017;26:4606–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46:551–7.

    Article  CAS  PubMed  Google Scholar 

  70. Coulson RL, Yasui DH, Dunaway KW, Laufer BI, Ciernia AV, Zhu Y, et al. Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat Commun. 2018;9:1616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, et al. A Prader–Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet. 2013;22:4318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Leung KN, Vallero RO, DuBose AJ, Resnick JL, LaSalle JM. Imprinting regulates mammalian snoRNA-encoding chromatin decondensation and neuronal nucleolar size. Hum Mol Genet. 2009;18:4227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Coulson RL, Powell WT, Yasui DH, Dileep G, Resnick J, LaSalle JM. Prader-Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN. Hum Mol Genet. 2018;27:4051–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Cavaillé J. Box C/D small nucleolar RNA genes and the Prader-Willi syndrome: a complex interplay. Wiley Interdiscip Rev RNA. 2017;8:e1417.

    Article  CAS  Google Scholar 

  75. Falaleeva M, Surface J, Shen M, de la Grange P, Stamm S. SNORD116 and SNORD115 change expression of multiple genes and modify each other’s activity. Gene. 2015;572:266–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Griggs JL, Mathai ML, Sinnayah P. Caralluma fimbriata extract activity involves the 5-HT2c receptor in PWS Snord116 deletion mouse model. Brain Behav. 2018;8:e01102.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Maillard J, Park S, Croizier S, Vanacker C, Cook JH, Prevot V, et al. Loss of Magel2 impairs the development of hypothalamic anorexigenic circuits. Hum Mol Genet. 2016;25:3208–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Devroye C, Filip M, Przegaliński E, McCreary AC, Spampinato U. Serotonin2C receptors and drug addiction: focus on cocaine. Exp Brain Res. 2013;230:537–45.

    Article  CAS  PubMed  Google Scholar 

  79. Humby T, Wilkinson LS. Assaying dissociable elements of behavioural inhibition and impulsivity: translational utility of animal models. Curr Opin Pharm. 2011;11:534–9.

    Article  CAS  Google Scholar 

  80. Zieba J, Low JK, Purtell L, Qi Y, Campbell L, Herzog H, et al. Behavioural characteristics of the Prader-Willi syndrome related biallelic Snord116 mouse model. Neuropeptides. 2015;53:71–7.

    Article  CAS  PubMed  Google Scholar 

  81. Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, et al. Snord116 is critical in the regulation of food intake and body weight. Sci Rep. 2016;6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4698587/.

  82. Adhikari A, Copping NA, Onaga B, Pride MC, Coulson RL, Yang M, et al. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol Learn Mem. 2019;165:106874.

    Article  CAS  PubMed  Google Scholar 

  83. Polex-Wolf J, Lam BY, Larder R, Tadross J, Rimmington D, Bosch F, et al. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest. 2018;128:960–9.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carias KV, Wevrick R. Preclinical testing in translational animal models of Prader-Willi syndrome: overview and gap analysis. Mol Ther Methods Clin Dev. 2019;13:344–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ding F, Prints Y, Dhar MS, Johnson DK, Garnacho-Montero C, Nicholls RD, et al. Lack of Pwcr1/MBII-85 snoRNA is critical for neonatal lethality in Prader-Willi syndrome mouse models. Mamm Genome J Int Mamm Genome Soc. 2005;16:424–31.

    Article  CAS  Google Scholar 

  86. Skryabin BV, Gubar LV, Seeger B, Pfeiffer J, Handel S, Robeck T, et al. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation. PLoS Genet. 2007;3:e235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Khor E-C, Fanshawe B, Qi Y, Zolotukhin S, Kulkarni RN, Enriquez RF, et al. Prader-Willi critical region, a non-translated, imprinted central regulator of bone mass: possible role in skeletal abnormalities in Prader-Willi syndrome. PLoS ONE. 2016;11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732947/.

  88. Lassi G, Maggi S, Balzani E, Cosentini I, Garcia-Garcia C, Tucci V. Working-for-food behaviors: a preclinical study in Prader-Willi mutant mice. Genetics. 2016;204:1129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lassi G, Priano L, Maggi S, Garcia-Garcia C, Balzani E, El-Assawy N, et al. Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader-Willi syndrome. Sleep. 2016;39:637–44.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Purtell L, Qi Y, Campbell L, Sainsbury A, Herzog H. Adult-onset deletion of the Prader-Willi syndrome susceptibility gene Snord116 in mice results in reduced feeding and increased fat mass. Transl Pediatr. 2017;6:88–97.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Rodriguez JA, Zigman JM. Hypothalamic loss of Snord116 and Prader-Willi syndrome hyperphagia: the buck stops here? J Clin Invest. 2018;128:900–2.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fountain MD, Schaaf CP. Prader-Willi syndrome and Schaaf-Yang syndrome: neurodevelopmental diseases intersecting at the MAGEL2 gene. Diseases. 2016;4:2.

    Article  PubMed Central  CAS  Google Scholar 

  93. Langouët M, Glatt-Deeley HR, Chung MS, Dupont-Thibert CM, Mathieux E, Banda EC, et al. Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons. Hum Mol Genet. 2018;27:505–15.

    Article  PubMed  CAS  Google Scholar 

  94. Meziane H, Schaller F, Bauer S, Villard C, Matarazzo V, Riet F, et al. An early postnatal oxytocin treatment prevents social and learning deficits in adult mice deficient for Magel2, a gene involved in Prader-Willi syndrome and autism. Biol Psychiatry. 2015;78:85–94.

    Article  CAS  PubMed  Google Scholar 

  95. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  Google Scholar 

  96. Yin Q-F, Yang L, Zhang Y, Xiang J-F, Wu Y-W, Carmichael GG, et al. Long noncoding RNAs with snoRNA ends. Mol Cell. 2012;48:219–30.

    Article  CAS  PubMed  Google Scholar 

  97. Farris SP, Arasappan D, Hunicke-Smith S, Harris RA, Mayfield RD. Transcriptome organization for chronic alcohol abuse in human brain. Mol Psychiatry. 2015;20:1438–47.

    Article  CAS  PubMed  Google Scholar 

  98. Farris SP, Mayfield RD. RNA-Seq reveals novel transcriptional reorganization in human alcoholic brain. Int Rev Neurobiol. 2014;116:275–300.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bohnsack JP, Teppen T, Kyzar EJ, Dzitoyeva S, Pandey SC. The lncRNA BDNF-AS is an epigenetic regulator in the human amygdala in early onset alcohol use disorders. Transl Psychiatry. 2019;9:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bueno M, Esteba-Castillo S, Novell R, Giménez-Palop O, Coronas R, Gabau E, et al. Lack of postprandial peak in brain-derived neurotrophic factor in adults with Prader-Willi syndrome. PloS ONE. 2016;11:e0163468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Faulk C, Kim JH, Jones TR, McEachin RC, Nahar MS, Dolinoy DC, et al. Bisphenol A-associated alterations in genome-wide DNA methylation and gene expression patterns reveal sequence-dependent and non-monotonic effects in human fetal liver. Environ Epigenet. 2015;1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4922640/.

Download references

Funding

This work was supported by a grant from the French Association for Prader–Willi syndrome (grant R15062BB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maithé Tauber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salles, J., Lacassagne, E., Eddiry, S. et al. What can we learn from PWS and SNORD116 genes about the pathophysiology of addictive disorders?. Mol Psychiatry 26, 51–59 (2021). https://doi.org/10.1038/s41380-020-00917-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00917-x

This article is cited by

Search

Quick links