Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior

Abstract

Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB–MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression and function of the endocannabinoid system in the MHb.
Fig. 2: The MSDB sends an exclusively GABAergic projection to cholinergic neurons in the ventral MHb.
Fig. 3: CB1 receptor mRNA is predominantly expressed in GABA neurons in the MSDB.
Fig. 4: 2-AG from ventral MHb neurons suppresses MSDB GABA input and is limited by MAGL.
Fig. 5: MSDB-specific CB1 or MAGL knockout has opposing effects on anxiety- and depressive-like behavior.

Similar content being viewed by others

Data availability

All data necessary for evaluation of the paper’s conclusions are present in the main text and/or Supplementary Information.

References

  1. Walsh Z, Gonzalez R, Crosby K, M ST, Carroll C, Bonn-Miller MO. Medical cannabis and mental health: a guided systematic review. Clin Psychol Rev. 2017;51:15–29.

    Article  PubMed  Google Scholar 

  2. Sexton M, Cuttler C, Finnell JS, Mischley LK. A cross-sectional survey of medical cannabis users: patterns of use and perceived efficacy. Cannabis Cannabinoid Res. 2016;1:131–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blankman JL, Simon GM, Cravatt BF. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14:1347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhong P, Wang W, Pan B, Liu X, Zhang Z, Long JZ, et al. Monoacylglycerol lipase inhibition blocks chronic stress-induced depressive-like behaviors via activation of mTOR signaling. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2014;39:1763–76.

    Article  CAS  Google Scholar 

  5. Zhang Z, Wang W, Zhong P, Liu SJ, Long JZ, Zhao L, et al. Blockade of 2-arachidonoylglycerol hydrolysis produces antidepressant-like effects and enhances adult hippocampal neurogenesis and synaptic plasticity. Hippocampus. 2015;25:16–26.

    Article  PubMed  CAS  Google Scholar 

  6. Bedse G, Bluett RJ, Patrick TA, Romness NK, Gaulden AD, Kingsley PJ, et al. Therapeutic endocannabinoid augmentation for mood and anxiety disorders: comparative profiling of FAAH, MAGL and dual inhibitors. Transl Psychiatry. 2018;8:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Bedse G, Hartley ND, Neale E, Gaulden AD, Patrick TA, Kingsley PJ, et al. Functional redundancy between canonical endocannabinoid signaling systems in the modulation of anxiety. Biol Psychiatry. 2017;82:488–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jenniches I, Ternes S, Albayram O, Otte DM, Bach K, Bindila L, et al. Anxiety, stress, and fear response in mice with reduced endocannabinoid levels. Biol Psychiatry. 2016;79:858–68.

    Article  CAS  PubMed  Google Scholar 

  9. Shonesy BC, Bluett RJ, Ramikie TS, Baldi R, Hermanson DJ, Kingsley PJ, et al. Genetic disruption of 2-arachidonoylglycerol synthesis reveals a key role for endocannabinoid signaling in anxiety modulation. Cell Rep. 2014;9:1644–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–7.

    Article  CAS  PubMed  Google Scholar 

  11. Marcus DJ, Bedse G, Gaulden AD, Ryan JD, Kondev V, Winters ND, et al. Endocannabinoid signaling collapse mediates stress-induced amygdalo-cortical strengthening. Neuron. 2020;105:1062–76.e1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen CJ, Zheng D, Li KX, Yang JM, Pan HQ, Yu XD, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med. 2019;25:337–49.

    Article  CAS  PubMed  Google Scholar 

  13. Hsu YW, Wang SD, Wang S, Morton G, Zariwala HA, de la Iglesia HO, et al. Role of the dorsal medial habenula in the regulation of voluntary activity, motor function, hedonic state, and primary reinforcement. J Neurosci Off J Soc Neurosci. 2014;34:11366–84.

    Article  CAS  Google Scholar 

  14. Xu C, Sun Y, Cai X, You T, Zhao H, Li Y, et al. Medial habenula-interpeduncular nucleus circuit contributes to anhedonia-like behavior in a rat model of depression. Front Behav Neurosci. 2018;12:238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molas S, DeGroot SR, Zhao-Shea R, Tapper AR. Anxiety and nicotine dependence: emerging role of the habenulo-interpeduncular axis. Trends Pharmacol Sci. 2017;38:169–80.

    Article  CAS  Google Scholar 

  16. Yamaguchi T, Danjo T, Pastan I, Hikida T, Nakanishi S. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear. Neuron. 2013;78:537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao-Shea R, DeGroot SR, Liu L, Vallaster M, Pang X, Su Q, et al. Increased CRF signalling in a ventral tegmental area-interpeduncular nucleus-medial habenula circuit induces anxiety during nicotine withdrawal. Nat Commun. 2015;6:6770.

    Article  CAS  PubMed  Google Scholar 

  18. Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med. 2010;40:557–67.

    Article  CAS  PubMed  Google Scholar 

  19. Suarez J, Ortiz O, Puente N, Bermudez-Silva FJ, Blanco E, Fernandez-Llebrez P, et al. Distribution of diacylglycerol lipase alpha, an endocannabinoid synthesizing enzyme, in the rat forebrain. Neuroscience. 2011;192:112–31.

    Article  CAS  PubMed  Google Scholar 

  20. Kano M, Ohno-Shosaku T, Hashimotodani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiological Rev. 2009;89:309–80.

    Article  CAS  Google Scholar 

  21. Castillo PE, Younts TJ, Chavez AE, Hashimotodani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012;76:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qin C, Luo M. Neurochemical phenotypes of the afferent and efferent projections of the mouse medial habenula. Neuroscience. 2009;161:827–37.

    Article  CAS  Google Scholar 

  23. Gray JA, McNaughton N. The neuropsychology of anxiety: an enquiry into the functions of the septo-hippocampal system. 2nd ed. Oxford, New York: Oxford University Press; 2000, xvi, p. 424.

  24. Pratt JA. The neuroanatomical basis of anxiety. Pharmacol Ther. 1992;55:149–81.

    Article  CAS  PubMed  Google Scholar 

  25. Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14:22–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem. 2004;279:5298–305.

    Article  CAS  PubMed  Google Scholar 

  27. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133–40.

    Article  CAS  PubMed  Google Scholar 

  28. Kim U, Chung LY. Dual GABAergic synaptic response of fast excitation and slow inhibition in the medial habenula of rat epithalamus. J Neurophysiol. 2007;98:1323–32.

    Article  CAS  PubMed  Google Scholar 

  29. Choi K, Lee Y, Lee C, Hong S, Lee S, Kang SJ, et al. Optogenetic activation of septal GABAergic afferents entrains neuronal firing in the medial habenula. Sci Rep. 2016;6:34800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorlich A, Antolin-Fontes B, Ables JL, Frahm S, Slimak MA, Dougherty JD, et al. Reexposure to nicotine during withdrawal increases the pacemaking activity of cholinergic habenular neurons. Proc Natl Acad Sci USA. 2013;110:17077–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG. Pathway tracing using biotinylated dextran amines. J Neurosci Methods. 2000;103:23–37.

    Article  CAS  PubMed  Google Scholar 

  32. McMahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA, Südhof TC. Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci USA. 1996;93:4760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pizzarelli R, Griguoli M, Zacchi P, Petrini EM, Barberis A, Cattaneo A, et al. Tuning GABAergic inhibition: gephyrin molecular organization and functions. Neuroscience. 2020;439:125–36.

    Article  CAS  PubMed  Google Scholar 

  34. Dehmelt L, Halpain S. The MAP2/Tau family of microtubule-associated proteins. Genome Biol. 2004;6:204.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sotty F, Danik M, Manseau F, Laplante F, Quirion R, Williams S. Distinct electrophysiological properties of glutamatergic, cholinergic and GABAergic rat septohippocampal neurons: novel implications for hippocampal rhythmicity. J Physiol. 2003;551:927–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gulyas AI, Cravatt BF, Bracey MH, Dinh TP, Piomelli D, Boscia F, et al. Segregation of two endocannabinoid-hydrolyzing enzymes into pre- and postsynaptic compartments in the rat hippocampus, cerebellum and amygdala. Eur J Neurosci. 2004;20:441–58.

    Article  CAS  PubMed  Google Scholar 

  37. Yu T, Guo M, Garza J, Rendon S, Sun XL, Zhang W, et al. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction. Int J Neuropsychopharmacol. 2011;14:303–17.

    Article  PubMed  Google Scholar 

  38. Patel S, Hillard CJ. Role of endocannabinoid signaling in anxiety and depression. Curr Top Behav Neurosci. 2009;1:347–71.

    Article  CAS  PubMed  Google Scholar 

  39. Bourin M, Hascoet M. The mouse light/dark box test. Eur J Pharmacol. 2003;463:55–65.

    Article  CAS  PubMed  Google Scholar 

  40. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol. 2003;463:3–33.

    Article  CAS  PubMed  Google Scholar 

  41. Hogg S. A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol Biochem Behav. 1996;54:21–30.

    Article  CAS  PubMed  Google Scholar 

  42. de Brouwer G, Fick A, Harvey BH, Wolmarans W. A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: mapping the way forward. Cogn Affect Behav Neurosci. 2019;19:1–39.

    Article  PubMed  Google Scholar 

  43. Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ. A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology. 1989;97:277–9.

    Article  CAS  PubMed  Google Scholar 

  44. Rex A, Voigt JP, Voits M, Fink H. Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharmacol Biochem Behav. 1998;59:677–83.

    Article  CAS  PubMed  Google Scholar 

  45. Liu MY, Yin CY, Zhu LJ, Zhu XH, Xu C, Luo CX, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat Protoc. 2018;13:1686–98.

    Article  CAS  PubMed  Google Scholar 

  46. Rizvi SJ, Pizzagalli DA, Sproule BA, Kennedy SH. Assessing anhedonia in depression: potentials and pitfalls. Neurosci Biobehav Rev. 2016;65:21–35.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Castagne V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Neurosci. 2011;Chapter 8:Unit 8.10A.

    PubMed  Google Scholar 

  48. Zhang GW, Shen L, Zhong W, Xiong Y, Zhang LI, Tao HW. Transforming sensory cues into aversive emotion via septal-habenular pathway. Neuron. 2018;99:1016–28.e1015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koppensteiner P, Galvin C, Ninan I. Development- and experience-dependent plasticity in the dorsomedial habenula. Mol Cell Neurosci. 2016;77:105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Maccarrone M. Metabolism of the endocannabinoid anandamide: open questions after 25 years. Front Mol Neurosci. 2017;10:166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Soria-Gomez E, Busquets-Garcia A, Hu F, Mehidi A, Cannich A, Roux L, et al. Habenular CB1 receptors control the expression of aversive memories. Neuron. 2015;88:306–13.

    Article  CAS  PubMed  Google Scholar 

  52. Jacob W, Yassouridis A, Marsicano G, Monory K, Lutz B, Wotjak CT. Endocannabinoids render exploratory behaviour largely independent of the test aversiveness: role of glutamatergic transmission. Genes Brain Behav. 2009;8:685–98.

    Article  CAS  PubMed  Google Scholar 

  53. Bluett RJ, Baldi R, Haymer A, Gaulden AD, Hartley ND, Parrish WP, et al. Endocannabinoid signalling modulates susceptibility to traumatic stress exposure. Nat Commun. 2017;8:14782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gamble-George JC, Conger JR, Hartley ND, Gupta P, Sumislawski JJ, Patel S. Dissociable effects of CB1 receptor blockade on anxiety-like and consummatory behaviors in the novelty-induced hypophagia test in mice. Psychopharmacology. 2013;228:401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Liu X, Vickstrom CR, Liu MJ, Zhao L, Viader A, et al. Neuronal and astrocytic monoacylglycerol lipase limit the spread of endocannabinoid signaling in the cerebellum. eNeuro. 2016;3:e0048–16.

  56. Liu X, Chen Y, Vickstrom CR, Li Y, Viader A, Cravatt BF, et al. Coordinated regulation of endocannabinoid-mediated retrograde synaptic suppression in the cerebellum by neuronal and astrocytic monoacylglycerol lipase. Sci Rep. 2016;6:35829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vandecasteele M, Varga V, Berenyi A, Papp E, Bartho P, Venance L, et al. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus. Proc Natl Acad Sci USA. 2014;111:13535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Justus D, Dalugge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, et al. Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci. 2017;20:16–9.

    Article  CAS  PubMed  Google Scholar 

  59. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature. 1988;336:170–3.

    Article  CAS  PubMed  Google Scholar 

  60. Hoffman AF, Riegel AC, Lupica CR. Functional localization of cannabinoid receptors and endogenous cannabinoid production in distinct neuron populations of the hippocampus. Eur J Neurosci. 2003;18:524–34.

    Article  PubMed  Google Scholar 

  61. Le Foll B, French L. Transcriptomic characterization of the human habenula highlights drug metabolism and the neuroimmune system. Front Neurosci. 2018;12:742.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Han S, Yang SH, Kim JY, Mo S, Yang E, Song KM, et al. Down-regulation of cholinergic signaling in the habenula induces anhedonia-like behavior. Sci Rep. 2017;7:900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Ma Z, Zhong Y, Hines CS, Wu Y, Li Y, Pang M, et al. Identifying generalized anxiety disorder using resting state habenular circuitry. Brain Imaging Behav. 2019. https://doi.org/10.1007/s11682-019-00055-1.

  64. Darmani NA, Janoyan JJ, Kumar N, Crim JL. Behaviorally active doses of the CB1 receptor antagonist SR 141716A increase brain serotonin and dopamine levels and turnover. Pharmacol Biochem Behav. 2003;75:777–87.

    Article  CAS  PubMed  Google Scholar 

  65. Kaifosh P, Lovett-Barron M, Turi GF, Reardon TR, Losonczy A. Septo-hippocampal GABAergic signaling across multiple modalities in awake mice. Nat Neurosci. 2013;16:1182–4.

    Article  CAS  PubMed  Google Scholar 

  66. Acsady L, Arabadzisz D, Katona I, Freund TF. Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biol Hung. 1996;47:9–19.

    CAS  PubMed  Google Scholar 

  67. Han X, He Y, Bi GH, Zhang HY, Song R, Liu QR, et al. CB1 receptor activation on VgluT2-expressing glutamatergic neurons underlies delta(9)-tetrahydrocannabinol (Delta(9)-THC)-induced aversive effects in mice. Sci Rep. 2017;7:12315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Viader A, Blankman JL, Zhong P, Liu X, Schlosburg JE, Joslyn CM, et al. Metabolic interplay between astrocytes and neurons regulates endocannabinoid action. Cell Rep. 2015;12:798–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhong P, Vickstrom CR, Liu X, Hu Y, Yu L, Yu HG, et al. HCN2 channels in the ventral tegmental area regulate behavioral responses to chronic stress. eLife. 2018;7:e32420.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Vickstrom CR, Liu X, Zhang Y, Mu L, Kelly TJ, Yan X, et al. T-type calcium channels contribute to burst firing in a subpopulation of medial habenula neurons. eNeuro. 2020;7.

  71. Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, et al. Preparation of acute brain slices using an optimized N-Methyl-D-glucamine protective recovery method. J Vis Exp. 2018;132:e53825.

    Google Scholar 

  72. Cho CH, Lee S, Kim A, Yarishkin O, Ryoo K, Lee YS, et al. TMEM16A expression in cholinergic neurons of the medial habenula mediates anxiety-related behaviors. EMBO Rep. 2020;21:e48097.

    Article  CAS  PubMed  Google Scholar 

  73. Ge F, Mu P, Guo R, Cai L, Liu Z, Dong Y, et al. Chronic sleep fragmentation enhances habenula cholinergic neural activity. Mol Psychiatry. 2019.

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants MH115536 (to CRV), MH121454 (to QSL and CJH), DA047269 (to QSL), and DA035217 (to QSL). It was also partially funded through the Research and Education Initiative Fund, a component of the Advancing a Healthier Wisconsin endowment at the Medical College of Wisconsin. CRV is a member of the Medical Scientist Training Program at MCW, which is partially supported by a training grant from NIGMS T32-GM080202.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Casey R. Vickstrom or Qing-song Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vickstrom, C.R., Liu, X., Liu, S. et al. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 26, 3178–3191 (2021). https://doi.org/10.1038/s41380-020-00905-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00905-1

This article is cited by

Search

Quick links