Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A Drosophila model of sleep restriction therapy for insomnia

Abstract

Insomnia is the most common sleep disorder among adults, especially affecting individuals of advanced age or with neurodegenerative disease. Insomnia is also a common comorbidity across psychiatric disorders. Cognitive behavioral therapy for insomnia (CBT-I) is the first-line treatment for insomnia; a key component of this intervention is restriction of sleep opportunity, which optimizes matching of sleep ability and opportunity, leading to enhanced sleep drive. Despite the well-documented efficacy of CBT-I, little is known regarding how CBT-I works at a cellular and molecular level to improve sleep, due in large part to an absence of experimentally-tractable animals models of this intervention. Here, guided by human behavioral sleep therapies, we developed a Drosophila model for sleep restriction therapy (SRT) of insomnia. We demonstrate that restriction of sleep opportunity through manipulation of environmental cues improves sleep efficiency in multiple short-sleeping Drosophila mutants. The response to sleep opportunity restriction requires ongoing environmental inputs, but is independent of the molecular circadian clock. We apply this sleep opportunity restriction paradigm to aging and Alzheimer’s disease fly models, and find that sleep impairments in these models are reversible with sleep restriction, with associated improvement in reproductive fitness and extended lifespan. This work establishes a model to investigate the neurobiological basis of CBT-I, and provides a platform that can be exploited toward novel treatment targets for insomnia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dement W, Pelayo R. Public health impact and treatment of insomnia. Eur Psychiatry. 1997;12:31s–9s.

    Google Scholar 

  2. Ozminkowski RJ, Wang S, Walsh JK. The direct and indirect costs of untreated insomnia in adults in the United States. Sleep. 2007;30:263–73.

    PubMed  Google Scholar 

  3. Daley M, Morin CM, LeBlanc M, Grégoire JP, Savard J, Baillargeon L. Insomnia and its relationship to health-care utilization, work absenteeism, productivity and accidents. Sleep Med. 2009;10:427–38.

    CAS  PubMed  Google Scholar 

  4. Sarsour K, Morin CM, Foley K, Kalsekar A, Walsh JK. Association of insomnia severity and comorbid medical and psychiatric disorders in a health plan-based sample: insomnia severity and comorbidities. Sleep Med. 2010;11:69–74.

    PubMed  Google Scholar 

  5. Qaseem A, Kansagara D, Forciea MA, Cooke M, Denberg TD, Barry MJ, et al. Management of chronic insomnia disorder in adults: a clinical practice guideline from the American college of physicians. Ann Intern Med. 2016;165:125–33.

    PubMed  Google Scholar 

  6. Miller CB, Espie CA, Epstein DR, Friedman L, Morin CM, Pigeon WR, et al. The evidence base of sleep restriction therapy for treating insomnia disorder. Sleep Med Rev. 2014;18:415–24.

    PubMed  Google Scholar 

  7. Spielman AJ. Assessment of insomnia. Clin Psychol Rev. 1986;6:11–25.

    Google Scholar 

  8. Morin CM, LeBlanc M, Daley M, Gregoire JP, Mérette C. Epidemiology of insomnia: prevalence, self-help treatments, consultations, and determinants of help-seeking behaviors. Sleep Med. 2006;7:123–30.

    CAS  PubMed  Google Scholar 

  9. Trauer JM, Qian MY, Doyle JS, Rajaratnam SMW, Cunnington D. Cognitive behavioral therapy for chronic insomnia: a systematic review and meta-analysis. Ann Intern Med. 2015;163:191–204.

    PubMed  Google Scholar 

  10. Wu JQ, Appleman ER, Salazar RD, Ong JC. Cognitive behavioral therapy for insomnia comorbid with psychiatric and medical conditions a meta-analysis. JAMA Intern Med. 2015;175:1461–72.

    PubMed  Google Scholar 

  11. Sivertsen B, Vedaa Ø, Nordgreen T. The future of insomnia treatment—the challenge of implementation. Sleep. 2013;36:303–4.

    PubMed  PubMed Central  Google Scholar 

  12. Kathol RG, Arnedt JT. Cognitive behavioral therapy for chronic insomnia: confronting the challenges to implementation. Ann Intern Med. 2016;165:149–50.

    PubMed  Google Scholar 

  13. Mitchell MD, Gehrman P, Perlis M, Umscheid CA. Comparative effectiveness of cognitive behavioral therapy for insomnia: a systematic review. BMC Fam Pract. 2012;13:40. https://doi.org/10.1186/1471-2296-13-40.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3:S7–10. https://doi.org/10.1378/chest.14-0970.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Toth LA, Bhargava P. Animal models of sleep disorders. Comp Med. 2013;63:91–104.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, et al. Reduced sleep in Drosophila Shaker mutants. Nature. 2005;434:1087–92.

    CAS  PubMed  Google Scholar 

  17. Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A. Identification of SLEEPLESS, a sleep-promoting factor. Science. 2008;321:372–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bushey D, Huber R, Tononi G, Cirelli C. Drosophila Hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci. 2007;27:5384–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stavropoulos N, Young MW. insomniac and Cullin-3 regulate sleep and wakefulness in Drosophila. Neuron. 2011;72:964–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kume K, Kume S, Park SK, Hirsh J, Jackson FR. Dopamine is a regulator of arousal in the fruit. J Neurosci. 2005;25:7377–84.

    CAS  Google Scholar 

  21. Bushey D, Hughes Ka, Tononi G, Cirelli C. Sleep, aging, and lifespan in Drosophila. BMC Neurosci. 2010;11:56.

    PubMed  PubMed Central  Google Scholar 

  22. Zhang S, Yin Y, Lu H, Guo A. Increased dopaminergic signaling impairs aversive olfactory memory retention in Drosophila. Biochem Biophys Res Commun. 2008;370:82–86.

    CAS  PubMed  Google Scholar 

  23. Seugnet L, Suzuki Y, Thimgan M, Donlea J, Gimbel SI, Gottschalk L, et al. Identifying sleep regulatory genes using a Drosophila model of insomnia. J Neurosci. 2009;29:7148–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Robertson M, Keene AC. Molecular mechanisms of age-related sleep loss in the fruit fly—a mini-review. Gerontology. 2013;59:334–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hasan S, Dauvilliers Y, Mongrain V, Franken P, Tafti M. Age-related changes in sleep in inbred mice are genotype dependent. Neurobiol Aging. 2012;33:195.e13–26. https://doi.org/10.1016/j.neurobiolaging.2010.05.010.

    Article  Google Scholar 

  26. Mander BA, Winer JR, Walker MP. Sleep and human aging. Neuron. 2017;94:19–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP, Cirrito JR, et al. Amyloid-B dynamics are regulated by orexin and the sleep-wake cycle. Science. 2009;326:1005–7.

    CAS  Google Scholar 

  28. Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman RJ, et al. Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med. 2012;4:150ra122.

    PubMed  PubMed Central  Google Scholar 

  29. Ju YE, Lucey BP, Holtzman DM. Sleep and Alzheimer disease pathology—a bidirectional relationship. Nat Rev Neurol. 2014;10:115–9.

    CAS  PubMed  Google Scholar 

  30. Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, et al. Sleep interacts with aβ to modulate intrinsic neuronal excitability. Curr Biol. 2015;25:702–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Iijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y. Dissecting the pathological effects of human Aβ40 and Aβ42 in Drosophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101:6623–8.

    CAS  PubMed  Google Scholar 

  32. Dissel S, Klose M, Donlea J, Cao L, English D, Winsky-Sommerer R, et al. Enhanced sleep reverses memory deficits and underlying pathology in drosophila models of Alzheimer’s disease. Neurobiol Sleep Circadian Rhythm. 2017;2:15–26.

    Google Scholar 

  33. Saarelainen L, Tolppanen A, Koponen M, Tanskanen A, Tiihonen J, Hartikainen S, et al. Risk of death associated with new benzodiazepine use among persons with Alzheimer disease: a matched cohort study. Int J Geriatr Psychatry. 2018;33:583–90.

    Google Scholar 

  34. Krystal AD, Edinger JD. Sleep EEG predictors and correlates of the response to cognitive behavioral therapy for insomnia. Sleep. 2010;33:669–77.

    PubMed  PubMed Central  Google Scholar 

  35. Riemann D, Perlis ML. The treatments of chronic insomnia: a review of benzodiazepine receptor agonists and psychological and behavioral therapies. Sleep Med Rev. 2009;13:205–14.

    PubMed  Google Scholar 

  36. Cassidy-Eagle E, Siebern A, Unti L, Glassman J, O’Hara R. Neuropsychological functioning in older adults with mild cognitive impairment and insomnia randomized to CBT-I or control group. Clin Gerontol 2018; 41: 136–144.

  37. Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA, et al. Intraneuronal Aβ, non-amyloid aggregates and neurodegeneration in a Drosophila model of Alzheimer’s disease. Neuroscience. 2005;132:123–35.

    CAS  PubMed  Google Scholar 

  38. Gilestro GF. Video tracking and analysis of sleep in Drosophila melanogaster. Nat Protoc. 2012;7:995–1007.

    CAS  PubMed  Google Scholar 

  39. Gilestro GF, Cirelli C. PySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics. 2009;25:1466–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kayser MS, Yue Z, Sehgal A. A critical period of sleep for development of courtship circuitry and behavior in Drosophila. Science. 2014;344:269–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dilley LC, Vigderman A, Williams CE, Kayser MS. Behavioral and genetic features of sleep ontogeny in Drosophila. Sleep. 2018;41. https://doi.org/10.1093/sleep/zsy086.

  42. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, et al. Rest in Drosophila is a sleep-like state. Neuron. 2000;25:129–38.

    CAS  PubMed  Google Scholar 

  43. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. Correlates of sleep and waking in Drosophila melanogaster. Science. 2000;287:1834–7.

    CAS  PubMed  Google Scholar 

  44. Sateia MJ, Doghramji K, Hauri PJ, Morin CM. Evaluation of chronic insomnia. an American Academy of Sleep Medicine review. Sleep. 2000;23:243–308.

    CAS  PubMed  Google Scholar 

  45. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci USA. 1971;68:2112–6.

    CAS  PubMed  Google Scholar 

  46. Kyle SD, Aquino MRJ, Miller CB, Henry AL, Crawford MR, Espie CA, et al. Towards standardisation and improved understanding of sleep restriction therapy for insomnia disorder: a systematic examination of CBT-I trial content. Sleep Med Rev. 2015;23:83–88.

    PubMed  Google Scholar 

  47. Majercak J, Sidote D, Hardin PE, Edery I. How a circadian clock adapts to seasonal decreases in temperature and day length. Neuron. 1999;24:219–30.

    CAS  PubMed  Google Scholar 

  48. Shi M, Yue Z, Kuryatov A, Lindstrom JM, Sehgal A. Identification of Redeye, a new sleep- regulating protein whose expression is modulated by sleep amount. Elife. 2014;3:e01473.

  49. Liu S, Lamaze A, Liu Q, Tabuchi M, Yang Y, Fowler M, et al. WIDE AWAKE mediates the circadian timing of sleep onset. Neuron. 2014;82:151–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Edinger JD, Wohlgemuth WK, Radtke RA, Marsh GR, Quillian RE. Cognitive behavioral therapy for treatment of chronic primary insomnia: a randomized controlled trial. JAMA. 2001;285:1856–64.

    CAS  PubMed  Google Scholar 

  51. Smith MT, Perlis ML, Park A, Smith MS, Pennington J, Giles DE, et al. Comparative meta-analysis of pharmacotherapy and behavior therapy for persistent insomnia. Am J Psychiatry. 2002;159:5–11.

    PubMed  Google Scholar 

  52. Edinger JD, Wohlgemuth WK, Radtke RA, Coffman CJ, Carney CE. Dose-response effects of cognitive-behavioral insomnia therapy: a randomized clinical trial. Sleep. 2007;30:203–12.

    PubMed  Google Scholar 

  53. Qiu J, Hardin PE. per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol Cell Biol. 1996;16:4182–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Okamoto-Mizuno K, Mizuno K. Effects of thermal environment on sleep and circadian rhythm. J Physiol Anthropol. 2012;31:1–9.

    Google Scholar 

  55. Kaneko H, Head LM, Ling J, Tang X, Liu Y, Hardin PE, et al. Circadian rhythm of temperature preference and its neural control in Drosophila. Curr Biol. 2012;22:1851–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Luo W, Chen WF, Yue Z, Chen D, Sowcik M, Sehgal A, et al. Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell. 2012;11:428–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ishimoto H, Lark A, Kitamoto T. Factors that differentially affect daytime and nighttime sleep in Drosophila melanogaster. Front Neurol. 2012;3:24.

  58. Parisky KM, Agosto Rivera JL, Donelson NC, Kotecha S, Griffith LC. Reorganization of sleep by temperature in Drosophila requires light, the homeostat, and the circadian clock. Curr Biol. 2016;26:882–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Matthews EE, Arnedt JT, McCarthy MS, Cuddihy LJ, Aloia MS. Adherence to cognitive behavioral therapy for insomnia: a systematic review. Sleep Med Rev. 2013;17:453–64.

    PubMed  Google Scholar 

  60. Yoshii T, Hermann-Luibl C, Helfrich-Forster C. Circadian light-input pathways in Drosophila. Commun Integr Biol. 2015;9:e1102805. https://doi.org/10.1080/19420889.2015.1102805.

    Article  CAS  PubMed  Google Scholar 

  61. Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron. 2001;30:249–61.

    PubMed  Google Scholar 

  62. Emery P, So WV, Kaneko M, Hall JC, Rosbash M. Cry, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell. 1998;95:669–79.

    CAS  PubMed  Google Scholar 

  63. Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron. 2000;26:493–504.

    CAS  PubMed  Google Scholar 

  64. Agrawal P, Houl JH, Gunawardhana KL, Liu T, Zhou J, Zoran MJ, et al. Drosophila CRY entrains clocks in body tissues to light and maintains passive membrane properties in a non-clock body tissue independent of light. Curr Biol. 2017;27:2431–41.e3.

    CAS  PubMed  Google Scholar 

  65. Koh K, Evans JM, Hendricks JC, Sehgal A. A Drosophila model for age-associated changes in sleep:wake cycles. Proc Natl Acad Sci USA. 2006;103:13843–7.

    CAS  PubMed  Google Scholar 

  66. Brown MK, Chan MT, Zimmerman JE, Pack AI, Jackson NE, Naidoo N. Aging induced endoplasmic reticulum stress alters sleep and sleep homeostasis. Neurobiol Aging. 2014;35:1431–41.

    CAS  PubMed  Google Scholar 

  67. Vienne J, Spann R, Guo F, Rosbash M. Age-related reduction of recovery sleep and arousal threshold in Drosophila. Sleep. 2016;39:1613–24.

    PubMed  PubMed Central  Google Scholar 

  68. Pandi-Perumal SR, Seils LK, Kayumov L, Ralph MR, Lowe A, Moller H, et al. Senescence, sleep, and circadian rhythms. Ageing Res Rev. 2002;1:559–604.

    CAS  PubMed  Google Scholar 

  69. Curtsinger JW. Late-life fecundity plateaus in Drosophila melanogaster can be explained by variation in reproductive life spans. Exp Gerontol. 2013;48:1338–42.

    PubMed  Google Scholar 

  70. Potdar S, Daniel DK, Thomas FA, Lall S, Sheeba V. Sleep deprivation negatively impacts reproductive output in Drosophila melanogaster. J Exp Biol. 2018;221:jeb174771.

    PubMed  Google Scholar 

  71. Finelli A, Kelkar A, Song HJ, Yang H, Konsolaki M. A model for studying Alzheimer’s Aβ42-induced toxicity in Drosophila melanogaster. Mol Cell Neurosci. 2004;26:365–75.

    CAS  PubMed  Google Scholar 

  72. Nilsberth C, Westlind-danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, et al. The ‘Arctic’ APP mutation (E693G) causes Alzheimer’ s disease by enhanced A β protofibril formation. Nat Neurosci. 2001;4:18–23.

    Google Scholar 

  73. Perlis ML, Shaw PJ, Cano G, Espie CA. (2011). Models of insomnia. In: Kryger M, Roth T, Dement W (ed). Principles and Practice of Sleep Medicine, 5th Edition. Saunders, 2011, pp 850–66.

  74. Gehrman PR, Pfeiffenberger C, Byrne EM. The role of genes in the insomnia phenotype. Sleep Med Clin. 2013;8:323–31.

    PubMed  PubMed Central  Google Scholar 

  75. Lind MJ, Gehrman PR. Genetic pathways to insomnia. Brain Sci. 2016;6. https://doi.org/10.3390/brainsci6040064.

  76. Veatch OJ, Keenan BT, Gehrman PR, Malow BA, Pack AI. Pleiotropic genetic effects influencing sleep and neurological disorders. Lancet Neurol. 2017;16:158–70.

    PubMed  PubMed Central  Google Scholar 

  77. Dubowy C, Sehgal A. Circadian rhythms and sleep in Drosophila melanogaster. Genetics. 2017;205:1373–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Harbison ST, McCoy LJ, Mackay TF. Genome-wide association study of sleep in Drosophila melanogaster. BMC Genom. 2013;14:281. https://doi.org/10.1186/1471-2164-14-281.

    Article  CAS  Google Scholar 

  79. Bathgate CJ, Edinger JD, Krystal AD. Insomnia patients with objective short sleep duration have a blunted response to cognitive behavioral therapy for Insomnia. Sleep. 2017;40. https://doi.org/10.1093/sleep/zsw012.

  80. Taub JM, Berger RJ. Performance and mood following variations in the length and timing of sleep. Psychophysiology. 1973;10:559–70.

    CAS  PubMed  Google Scholar 

  81. Reynold AM, Bowles ER, Saxena A, Fayad R, Youngstedt SD. Negative effects of time in bed extension: a pilot study. J Sleep Med Disord. 2014;1:1–13.

    Google Scholar 

  82. Spielman A, Saskin P, Thorpy MJ. Treatment of chronic insomnia by restriction of time in bed. Sleep. 1987;10:45–56.

    CAS  PubMed  Google Scholar 

  83. Perlis ML, Corbitt CB, Kloss JD. Insomnia research: 3Ps and beyond. Sleep Med Rev. 2014;18:191–3.

    PubMed  Google Scholar 

  84. Insel TR. Next-generation treatments for mental disorders. Sci Transl Med. 2012;4:155ps19.

    PubMed  Google Scholar 

  85. Hofmann SG, Asnaani A, Vonk IJ, Sawyer AT, Fang A. The efficacy of cognitive behavioral therapy: a review of meta-analyses. Cogn Ther Res. 2012;36:427–40.

    Google Scholar 

Download references

Acknowledgements

We thank Kyunghee Koh, Philip Gehrman, and members of the Kayser Lab for helpful discussions. This work was supported by NIH grants F30AG058409 (SJB), T32HL07953 (SJB), R21HD083628 (MLP), K24AG055602 (MLP), K08NS090461 (MSK), and a pilot grant (to MSK) from the University of Pennsylvania Alzheimer’s Disease Core Center (P30-AG010124). Other support includes a Hearst Foundation Fellowship Award (SJB), and Burroughs Wellcome Career Award for Medical Scientists, March of Dimes Basil O’Connor Scholar Award, and Sloan Research Fellowship (MSK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Kayser.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belfer, S.J., Bashaw, A.G., Perlis, M.L. et al. A Drosophila model of sleep restriction therapy for insomnia. Mol Psychiatry 26, 492–507 (2021). https://doi.org/10.1038/s41380-019-0376-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0376-6

Search

Quick links