Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

TIF1β activates leukemic transcriptional program in HSCs and promotes BCR::ABL1-induced myeloid leukemia

Abstract

TIF1β/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1β was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1β gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1β drove the progression of BCR::ABL1-induced leukemia. In addition, the deletion of Tif1β sensitized BCR::ABL1 KI leukemic cells to dasatinib. The deletion of Tif1β decreased the expression levels of TIF1β-target genes and chromatin accessibility peaks enriched with the Fosl1-binding motif in BCR::ABL1 KI stem cells. TIF1β directly bound to the promoters of proliferation genes, such as FOSL1, in human BCR::ABL1 cells, in which TIF1β and FOSL1 bound to adjacent regions of chromatin. Since the expression of Fosl1 was critical for the enhanced growth of BCR::ABL1 KI cells, Tif1β and Fosl1 interacted to activate the leukemic transcriptional program in and cellular function of BCR::ABL1 KI stem cells and drove the progression of myeloid leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased expression of TIF1β in aggressive myeloid leukemia.
Fig. 2: Tif1β is critical for the progression and maintenance of BCR::ABL1-induced leukemia.
Fig. 3: The loss of Tif1β sensitized the BCR::ABL1 leukemic cells to the dasatinib treatment.
Fig. 4: Tif1β was required for BCR::ABL1-induced transcriptional reprogramming in HSCs.
Fig. 5: Tif1β was required for the BCR::ABL1-dependent remodeling of chromatin in stem cells.
Fig. 6: Fosl1 was required for the enhanced cell growth of BCR::ABL1-expressing myeloid leukemia.

Similar content being viewed by others

Data availability

Sequencing data that support the results of the present study have been deposited in DDBJ (https://ddbj.nig.ac.jp/search/en) under the accession numbers DRA015122, DRA015123, and DRA015124 for RNA-seq, ChIP-seq, and ATAC-seq, respectively.

References

  1. Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5:172–83.

    Article  CAS  PubMed  Google Scholar 

  2. Foà R, Chiaretti S. Philadelphia Chromosome–Positive Acute Lymphoblastic Leukemia. N Engl J Med. 2022;386:2399–411.

    Article  PubMed  Google Scholar 

  3. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2:561–6.

    Article  CAS  PubMed  Google Scholar 

  4. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355:2408–17.

    Article  CAS  PubMed  Google Scholar 

  5. Saußele S, Richter J, Hochhaus A, Mahon FX. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia. 2016;30:1638–47.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brissot E, Labopin M, Beckers MM, Socié G, Rambaldi A, Volin L, et al. Tyrosine kinase inhibitors improve long-term outcome of allogeneic hematopoietic stem cell transplantation for adult patients with philadelphia chromosome positive acute lymphoblastic leukemia. Haematologica. 2015;100:392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Braun TP, Eide CA, Druker BJ. Response and Resistance to BCR-ABL1-Targeted Therapies. Cancer Cell. 2020;37:530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci. 2017;24:1–14.

    Article  Google Scholar 

  9. McAvera RM, Crawford LJ. TIF1 proteins in genome stability and cancer. Cancers. 2020;12:1–18.

    Article  Google Scholar 

  10. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16:919–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsui T, Leung D, Miyashita H, Maksakova I, Miyachi H, Kimura H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 2010;464:927–31.

    Article  CAS  PubMed  Google Scholar 

  12. Cammas F, Mark M, Dollé P, Dierich A, Chambon P, Losson R. Mice lacking the transcriptional corepressor TIF1β are defective in early postimplantation development. Development. 2000;127:2955–63.

    Article  CAS  PubMed  Google Scholar 

  13. Chikuma S, Suita N, Okazaki IM, Shibayama S, Honjo T. TRIM28 prevents autoinflammatory T cell development in vivo. Nat Immunol. 2012;13:596–603.

    Article  CAS  PubMed  Google Scholar 

  14. Chikuma S, Yamanaka S, Nakagawa S, Ueda MT, Hayabuchi H, Tokifuji Y, et al. TRIM28 Expression on Dendritic Cells Prevents Excessive T Cell Priming by Silencing Endogenous Retrovirus. J Immunol. 2021;206:1528–39.

    Article  CAS  PubMed  Google Scholar 

  15. Kubota S, Fukumoto Y, Aoyama K, Ishibashi K, Yuki R, Morinaga T, et al. Phosphorylation of KRAB-associated protein 1 (KAP1) at Tyr-449, Tyr-458, and Tyr-517 by nuclear tyrosine kinases inhibits the association of KAP1 and Heterochromatin Protein 1 a (HP1a) with heterochromatin. J Biol Chem. 2013;288:17871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K, et al. A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Investig. 2007;117:482–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ory DS, Neugeboren BA, Mulligan RC. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc Natl Acad Sci USA. 1996;93:11400–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yokomizo-Nakano T, Kubota S, Bai J, Hamashima A, Morii M, Sun Y, et al. Overexpression of RUNX3 represses RUNX1 to drive transformation of myelodysplastic syndrome. Cancer Res. 2020;80:2523–36.

    Article  CAS  PubMed  Google Scholar 

  19. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018;9:619.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li SQ, Liu J, Zhang J, Wang XL, Chen D, Wang Y, et al. Transcriptome profiling reveals the high incidence of hnRNPA1 exon 8 inclusion in chronic myeloid leukemia. J Adv Res. 2020;24:301–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinstein JN, Collisson EA, Mills GB, Shaw KRM, Ozenberger BA, Ellrott K, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45:1113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, et al. IL-6 Controls Leukemic Multipotent Progenitor Cell Fate and Contributes to Chronic Myelogenous Leukemia Development. Cancer Cell. 2011;20:661–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, et al. ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene. 2015;34:6055–65.

    Article  CAS  PubMed  Google Scholar 

  25. Aichberger KJ, Mayerhofer M, Vales A, Krauth MT, Gleixner KV, Bilban M, et al. The CML-related oncoprotein BCR/ABL induces expression of histidine decarboxylase (HDC) and the synthesis of histamine in leukemic cells. Blood. 2006;108:3538–47.

    Article  CAS  PubMed  Google Scholar 

  26. Luong-Gardiol N, Siddiqui I, Pizzitola I, Jeevan-Raj B, Charmoy M, Huang Y, et al. γ-Catenin-Dependent Signals Maintain BCR-ABL1+ B Cell Acute Lymphoblastic Leukemia. Cancer Cell. 2019;35:649–63.

    Article  CAS  PubMed  Google Scholar 

  27. Pieters T, Almeida A, T’Sas S, Lemeire K, Hochepied T, Berx G, et al. Myb drives B-cell neoplasms and myeloid malignancies in vivo. Blood Adv. 2022;6:2987–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang F, Demir S, Gehringer F, Osswald CD, Seyfried F, Enzenmüller S, et al. Tight regulation of FOXO1 is essential for maintenance of B-cell precursor acute lymphoblastic leukemia. Blood. 2018;131:2929–42.

    Article  CAS  PubMed  Google Scholar 

  29. DeKoter RP, Lee HJ, Singh H. PU.1 Regulates Expression of the Interleukin-7 Receptor in Lymphoid Progenitors. Immunity. 2002;16:297–309.

    Article  CAS  PubMed  Google Scholar 

  30. Iyengar S, Farnham PJ. KAP1 protein: An enigmatic master regulator of the genome. J Biol Chem. 2011;286:26267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zippo A, De Robertis A, Serafini R, Oliviero S. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol. 2007;9:932–44.

    Article  CAS  PubMed  Google Scholar 

  32. Søndergaard E, Rauch A, Michaut M, Rapin N, Rehn M, Wilhelmson AS, et al. ERG Controls B Cell Development by Promoting Igh V-to-DJ Recombination. Cell Rep. 2019;29:2756–69.

    Article  PubMed  Google Scholar 

  33. Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48:1481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, et al. Distinct properties of cell-type-specific and shared transcription factor binding sites. Mol Cell. 2013;52:25–36.

    Article  CAS  PubMed  Google Scholar 

  35. Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR-ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995;15:5531–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuster C, Forster K, Dierks H, Elsässer A, Behre G, Simon N, et al. The effects of Bcr-Abl on C/EBP transcription-factor regulation and neutrophilic differentiation are reversed by the Abl kinase inhibitor imatinib mesylate. Blood. 2003;101:655–63.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang X, Xie H, Dou Y, Yuan J, Zeng D, Xiao S. Expression and function of FRA1 protein in tumors. Mol Biol Rep. 2020;47:737–52.

    Article  CAS  PubMed  Google Scholar 

  38. Kesarwani M, Kincaid Z, Gomaa A, Huber E, Rohrabaugh S, Siddiqui Z, et al. Targeting c-FOS and DUSP1 abrogates intrinsic resistance to tyrosine-kinase inhibitor therapy in BCR-ABL-induced leukemia. Nat Med. 2017;23:472–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schuhmacher M, Kohlhuber F, Hölzel M, Kaiser C, Burtscher H, Jarsch M, et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 2001;29:397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J, et al. Genomic targets of the human c-Myc protein. Genes Dev. 2003;17:1115–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, et al. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet. 2004;36:624–30.

    Article  CAS  PubMed  Google Scholar 

  42. Staber PB, Zhang P, Ye M, Welner RS, Nombela-Arrieta C, Bach C, et al. Sustained PU.1 Levels Balance Cell-Cycle Regulators to Prevent Exhaustion of Adult Hematopoietic Stem Cells. Mol Cell. 2013;49:934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grassi DA, Jönsson ME, Brattås PL, Jakobsson J. TRIM28 and the control of transposable elements in the brain. Brain Res. 2019;1705:43–7.

    Article  CAS  PubMed  Google Scholar 

  44. Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D, Boeke JD, et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature. 2021;596:43–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyagi S, Koide S, Saraya A, Wendt GR, Oshima M, Konuma T, et al. The TIF1β-HP1 system maintains transcriptional integrity of hematopoietic stem cells. Stem Cell Rep. 2014;2:145–52.

    Article  CAS  Google Scholar 

  46. Koschmieder S, Göttgens B, Zhang P, Iwasaki-Arai J, Akashi K, Kutok JL, et al. Inducible chronic phase of myeloid leukemia with expansion of hematopoietic stem cells in a transgenic model of BCR-ABL leukemogenesis. Blood. 2005;105:324–34.

    Article  CAS  PubMed  Google Scholar 

  47. Mestas J, Hughes CCW. Of Mice and Not Men: Differences between Mouse and Human Immunology. J Immunol. 2004;172:2731–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Atsushi Iwama, Dr. Naoto Yamaguchi, Mr. Shinji Kudoh, and Dr. Takaaki Ito for their help and Dr. Florence Cammas for Tif1βflox/flox mice. This work was supported in part by grants from the Yasuda Medical Foundation (to GS), the Kobayashi Foundation for Cancer Research (to GS), the SENSHIN Medical Research Foundation (to GS), the Takeda Science Foundation (to MM and GS), the Japanese Society of Hematology (to GS), Grants-in-Aid for Scientific Research (18H02842, 21H02952, 21K06870 (to GS), 15K19545 (to SK), and 20K17383 (to MM)) and a Grant-in-Aid for JSPS Fellows (22J40054 to MM) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Contributions

MM performed experiments, analyzed and interpreted data, and wrote the manuscript; SK performed experiments and analyzed data; MI, TYN, AH, JB, AN and MT performed experiments; YA provided reagents; KA performed experiments and provided reagents; GS designed the study, analyzed and interpreted data, and wrote the manuscript; All authors reviewed the manuscript.

Corresponding author

Correspondence to Goro Sashida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morii, M., Kubota, S., Iimori, M. et al. TIF1β activates leukemic transcriptional program in HSCs and promotes BCR::ABL1-induced myeloid leukemia. Leukemia (2024). https://doi.org/10.1038/s41375-024-02276-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41375-024-02276-w

Search

Quick links