Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ANIMAL MODELS

Mutations in the histone methyltransferase Ezh2 drive context-dependent leukemia in Xenopus tropicalis

Abstract

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The notch1/ezh2 crispant cohort shows acute penetrant disease with short latency.
Fig. 2: The notch1/ezh2 crispant cohort develops acute leukemia of myeloid, but not T-cell origin.
Fig. 3: Biallelic inactivation of ezh2 drives leukemogenesis independent from notch1 editing status.
Fig. 4: AML cells show engraftment upon transplantation in an irradiated frog.
Fig. 5: notch1/ezh2/dnm2 crispants show a dual leukemic phenotype with lymphoid and myeloid features.
Fig. 6: Differential engraftment at particular body sites upon transplantation of a leukemic liver of a sick notch1/ezh2/dnm2 animal in a rag2−/− host.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its supplementary information and from the corresponding author upon reasonable request.

References

  1. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, et al. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49:1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. George J, Lim JS, Jang SJ, Cun Y, Ozretia L, Kong G, et al. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009;101:209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yap LF, Lee D, Khairuddin ANM, Pairan MF, Puspita B, Siar CH, et al. The opposing roles of NOTCH signalling in head and neck cancer: a mini review. Oral Dis. 2015;21:850–7.

    Article  CAS  PubMed  Google Scholar 

  5. Van Nieuwenhuysen T, Naert T, Tran HT, Van Imschoot G, Geurs S, Sanders E, et al. TALEN-mediated apc mutation in Xenopus tropicalis phenocopies familial adenomatous polyposis. Oncoscience. 2015;2:555–66.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Naert T, Dimitrakopoulou D, Tulkens D, Demuynck S, Carron M, Noelanders R, et al. RBL1 (p107) functions as tumor suppressor in glioblastoma and small-cell pancreatic neuroendocrine carcinoma in Xenopus tropicalis. Oncogene. 2020;39:2692–706.

    Article  CAS  PubMed  Google Scholar 

  7. Naert T, Tulkens D, Van Nieuwenhuysen T, Przybyl J, Demuynck S, Van de Rijn M, et al. CRISPR-SID: Identifying EZH2 as a druggable target for desmoid tumors via in vivo dependency mapping. Proc Natl Acad Sci USA. 2021;118:e2115116118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep. 2016;6:1–10.

    Article  Google Scholar 

  9. Tulkens D, Vleminckx K. Studying tumor formation and regulation in xenopus. CRC Press: Boca Raton, 2022, p. 301–11.

  10. Comet I, Riising EM, Leblanc B, Helin K. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer. 2016;16:803–10.

    Article  CAS  PubMed  Google Scholar 

  11. Kim KH, Roberts CWM. Targeting EZH2 in cancer. Nat Med. 2016;22:128–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chang CJ, Hung MC. The role of EZH2 in tumour progression. Br J Cancer. 2011;106:243–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Simon JA, Lange CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res Mol Mech Mutagen. 2008;647:21–29.

    Article  CAS  Google Scholar 

  14. Safaei S, Baradaran B, Hagh MF, Alivand MR, Talebi M, Gharibi T, et al. Double sword role of EZH2 in leukemia. Biomed Pharmacother. 2018;98:626–35.

    Article  CAS  PubMed  Google Scholar 

  15. Ntziachristos P, Tsirigos A, Welstead GG, Trimarchi T, Bakogianni S, Xu L, et al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia. Nature. 2014;514:513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Neumann M, Heesch S, Schlee C, Schwartz S, Gökbuget N, Hoelzer D, et al. Whole-exome sequencing in adult ETP-ALL reveals a high rate of DNMT3A mutations. Blood. 2013;121:4749–52.

    Article  CAS  PubMed  Google Scholar 

  17. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS, et al. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood. 2013;122:74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ge Z, Li M, Zhao G, Xiao L, Gu Y, Zhou X, et al. Novel dynamin 2 mutations in adult T-cell acute lymphoblastic leukemia. Oncol Lett. 2016;12:2746–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK, Khokha MK, et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. 2015;12:982–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, et al. BATCH-GE: Batch analysis of Next-Generation Sequencing data for genome editing assessment. Sci Rep. 2016;6:30330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Naert T, Tulkens D, Edwards NA, Carron M, Shaidani N-I, Wlizla M, et al. Maximizing CRISPR/Cas9 phenotype penetrance applying predictive modeling of editing outcomes in Xenopus and zebrafish embryos. Sci Rep. 2020;10:1–12.

    Article  Google Scholar 

  22. Maxham LA, Forzán MJ, Hogan NS, Vanderstichel RV, Gilroy CV. Hematologic reference intervals for Xenopus tropicalis with partial use of automatic counting methods and reliability of long-term stored samples. Vet Clin Pathol. 2016;45:291–9.

    Article  PubMed  Google Scholar 

  23. Natt MP, Herrick CA. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult Sci. 1952;31:735–8.

    Article  Google Scholar 

  24. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science. 1986;234:364–8.

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood. 2017;129:1124–33.

    Article  CAS  PubMed  Google Scholar 

  26. Ciau-Uitz A, Patient R. The embryonic origins and genetic programming of emerging haematopoietic stem cells. FEBS Lett. 2016;590:4002–15.

    Article  CAS  PubMed  Google Scholar 

  27. Robert J, Ohta Y. Comparative and developmental study of the immune system in Xenopus. Dev Dyn. 2009;238:1249–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tulkens D, Dimitrakopoulou D, Boelens M, Van Nieuwenhuysen T, Demuynck S, Toussaint W, et al. Engraftment of Allotransplanted Tumor Cells in Adult rag2 Mutant Xenopus tropicalis. Cancers. 2022;14:4560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Curtis DJ, Brown FC, Collett M, Lucas SE, Saw J, Robinson PJ, et al. Heterozygous mutation of dynamin 2 expands the pool of IL-7 responsive leukemic stem cells in T-cell acute lymphoblastic leukemia. Blood. 2013;122:613–613.

    Article  Google Scholar 

  31. Tremblay CS, Brown FC, Collett M, Saw J, Chiu SK, Sonderegger SE, et al. Loss-of-function mutations of Dynamin 2 promote T-ALL by enhancing IL-7 signalling. Leukemia. 2016;30:1993–2001.

    Article  CAS  PubMed  Google Scholar 

  32. Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: open source software for digital pathology image analysis. Sci Rep. 2017;7:1–7.

    Article  CAS  Google Scholar 

  33. Oliveira ML, Akkapeddi P, Ribeiro D, Melão A, Barata JT. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia: an update. Adv Biol Regul. 2019;71:88–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Naert T, Colpaert R, Van Nieuwenhuysen T, Dimitrakopoulou D, Leoen J, Haustraete J, et al. CRISPR/Cas9 mediated knockout of rb1 and rbl1 leads to rapid and penetrant retinoblastoma development in Xenopus tropicalis. Sci Rep. 2016;6:35264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mann KM, Newberg JY, Black MA, Jones DJ, Amaya-Manzanares F, Guzman-Rojas L, et al. Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq. Nat Biotechnol. 2016;34:962–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen L, Shi Q, Wang W. Double agents: genes with both oncogenic and tumor-suppressor functions. Oncogenesis. 2018;7:25.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schäfer V, Ernst J, Rinke J, Winkelmann N, Beck JF, Hochhaus A, et al. EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol. 2016;142:1641–50.

    Article  PubMed  Google Scholar 

  38. Harikrishnan KN, Bassal S, Tikellis C, El-Osta A. Expression analysis of the epigenetic methyltransferases and methyl-CpG binding protein families in the normal B-cell and B-cell chronic lymphocytic leukemia (CLL). Cancer Biol Ther. 2004;3:989–94.

    Article  CAS  Google Scholar 

  39. Nishioka C, Ikezoe T, Yang J, Yokoyama A. BCR/ABL increases EZH2 levels which regulates XIAP expression via miRNA-219 in chronic myeloid leukemia cells. Leuk Res. 2016;45:24–32.

    Article  CAS  PubMed  Google Scholar 

  40. Van Der Meulen J, Van Roy N, Van Vlierberghe P, Speleman F. The epigenetic landscape of T-cell acute lymphoblastic leukemia. Int J Biochem Cell Biol. 2014;53:547–57.

    Article  PubMed  Google Scholar 

  41. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42:722–6.

    Article  CAS  PubMed  Google Scholar 

  42. Xu F, Li X, Wu L, Zhang Q, Yang R, Yang Y, et al. Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol. 2011;90:643–53.

    Article  CAS  PubMed  Google Scholar 

  43. Göllner S, Oellerich T, Agrawal-Singh S, Schenk T, Klein HU, Rohde C, et al. Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia. Nat Med. 2017;23:69–78.

    Article  PubMed  Google Scholar 

  44. Basheer F, Giotopoulos G, Meduri E, Yun H, Mazan M, Sasca D, et al. Contrasting requirements during disease evolution identify EZH2 as a therapeutic target in AML. J Exp Med. 2019;216:966–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100:2292–302.

    Article  CAS  PubMed  Google Scholar 

  46. O’Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA, Jenuwein T. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21:4330–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Felice MS, Hammermuller E, De Dávila MT, Ciocca ME, Fraquelli LE, Lorusso AM, et al. Acute lymphoblastic leukemia presenting as acute hepatic failure in childhood. Leuk Lymphoma. 2009;38:633–7.

    Article  Google Scholar 

  48. Heincelman M, Karakala N, Rockey DC. Acute lymphoblastic leukemia in a young adult presenting as hepatitis and acute kidney injury. J Investig Med High Impact Case Rep. 2016;4:1–4.

    Google Scholar 

  49. Donnelly WH, Miale TD. Respiratory distress secondary to pulmonary leukemia. Am J Dis Child. 1981;135:716–8.

    PubMed  Google Scholar 

  50. Guermazi A, Feger C, Rousselot P, Merad M, Benchaib N, Bourrier P, et al. Granulocytic sarcoma (chloroma): imaging findings in adults and children. Am J Roentgenol. 2002;178:319–25.

    Article  CAS  Google Scholar 

  51. Umer I, Umer I, Burki F, Ahmed Y. Bilateral leukemic pulmonary infiltrate: a rare manifestation of acute myeloid leukemia. J Med Cases. 2014;5:137–9.

    Google Scholar 

  52. Potenza L, Luppi M, Morselli M, Tonelli S, D’Apollo N, Facchini L, et al. Leukaemic pulmonary infiltrates in adult acute myeloid leukaemia: a high-resolution computerized tomography study. Br J Haematol. 2003;120:1058–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

DT was funded by a Ph.D. fellowship from the Research Foundation—Flanders (FWO-Vlaanderen, 3F021818). Research in the authors’ laboratory is supported by the Research Foundation—Flanders (FWO-Vlaanderen) (grants 3G0A6922 and 3G0D8716) and by the Concerted Research Actions from Ghent University (01G01115). Further support was obtained by the Hercules Foundation, Flanders (grant AUGE/11/14), the Desmoid Tumor Research Foundation, the Desmoid Tumor Foundation of Canada and SOS Desmoïde. We would like to acknowledge Amanda Gonçalves and Benjamin Pavie (VIB Bioimaging Core) for generating the QuPath script for positive cell detection. Furthermore, we are thankful to Tim Deceuninck for the good animal care. Finally, we would like to thank Joeri Tulkens for critical proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

DT, TP, SG, PVV, and KV designed the study. DT and MB performed all genome engineering experiments. DT, SDem, TN, and MB performed general phenotyping experiments of the leukemia models. DT, MB, and SDew performed RNA expression analysis. WT executed the irradiation procedure. DT and GVI performed flow cytometry experiments. DT, MB, and SDem performed all stainings. TN performed binominal statistics. MC did the BATCH-GE analysis of amplicon deep sequencing data. DC provided histopathological feedback on blinded organ slides. DT and KV wrote the manuscript.

Corresponding author

Correspondence to Kris Vleminckx.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tulkens, D., Boelens, M., Naert, T. et al. Mutations in the histone methyltransferase Ezh2 drive context-dependent leukemia in Xenopus tropicalis. Leukemia 37, 2404–2413 (2023). https://doi.org/10.1038/s41375-023-02052-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02052-2

Search

Quick links