Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LYMPHOMA

Characterization of immune exhaustion and suppression in the tumor microenvironment of splenic marginal zone lymphoma

Abstract

The role of the tumor microenvironment (TME) and intratumoral T cells in splenic marginal zone lymphoma (sMZL) is largely unknown. In the present study, we evaluated 36 sMZL spleen specimens by single cell analysis to gain a better understanding of the TME in sMZL. Using mass cytometry (CyTOF), we observed that the TME in sMZL is distinct from that of control non-malignant reactive spleen (rSP). We found that the number of TFH cells varied greatly in sMZL, ICOS+ TFH cells were more abundant in sMZL than rSP, and TFH cells positively correlated with increased numbers of memory B cells. Treg cell analysis revealed that TIGIT+ Treg cells are enriched in sMZL and correlate with suppression of TH17 and TH22 cells. Intratumoral CD8+ T cells were comprised of subsets of short-lived, exhausted and late-stage differentiated cells, thereby functionally impaired. We observed that T-cell exhaustion was present in sMZL and TIM-3 expression on PD-1low cells identified cells with severe immune dysfunction. Gene expression profiling by CITE-seq analysis validated this finding. Taken together, our data suggest that the TME as a whole, and T-cell population specifically, are heterogenous in sMZL and immune exhaustion is one of the major factors impairing T-cell function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The overall immune content of spleens in patients with sMZL differs from rSP.
Fig. 2: ICOS+ TFH cells are expanded and positively correlate with memory B cells in sMZL.
Fig. 3: TIGIT+ Treg cells enrich in MZL and correlate with a suppression of TH17 and TH22 cells.
Fig. 4: CD8+ T cells in sMZL display a phenotype of late-stage differentiation.
Fig. 5: Coexpression of TIM-3 and PD-1 results in severe exhaustion in T cells.
Fig. 6: PD-1/TIM-3-defined subsets are transcriptomically different and DP cells exhibit gene expression profiling of more exhaustion in sMZL.
Fig. 7: Spatial profiling identifies different T cell subsets residing in various areas in sMZL tissue.

Similar content being viewed by others

Data availability

All CyTOF files were deposited at the FlowRepository website (http://flowrepository.org/).

References

  1. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9.

    Article  PubMed  Google Scholar 

  2. Chen R, Zinzani PL, Lee HJ, Armand P, Johnson NA, Brice P, et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood. 2019;134:1144–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ansell SM, Minnema MC, Johnson P, Timmerman JM, Armand P, Shipp MA, et al. Nivolumab for relapsed/refractory diffuse large B-cell lymphoma in patients ineligible for or having failed autologous transplantation: a single-arm, phase II study. J Clin Oncol. 2019;37:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lesokhin AM, Ansell SM, Armand P, Scott EC, Halwani A, Gutierrez M, et al. Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study. J Clin Oncol. 2016;34:2698–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129:3419–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Najafi S, Mirshafiey A. The role of T helper 17 and regulatory T cells in tumor microenvironment. Immunopharmacol Immunotoxicol. 2019;41:16–24.

    Article  CAS  PubMed  Google Scholar 

  7. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin’s lymphoma. Cancer Res. 2009;69:5522–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang ZZ, Grote DM, Xiu B, Ziesmer SC, Price-Troska TL, Hodge LS, et al. TGF-beta upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia. 2014;28:1872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015;6:e1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang ZZ, Grote DM, Ziesmer SC, Niki T, Hirashima M, Novak AJ, et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest. 2012;122:1271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang ZZ, Kim HJ, Villasboas JC, Chen YP, Price-Troska T, Jalali S, et al. Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 2017;8:61425–39.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bonfiglio F, Bruscaggin A, Guidetti F, Terzi di Bergamo L, Faderl M, Spina V, et al. Genetic and phenotypic attributes of splenic marginal zone lymphoma. Blood. 2022;139:732–47.

    Article  CAS  PubMed  Google Scholar 

  13. Gallimore A, Glithero A, Godkin A, Tissot AC, Pluckthun A, Elliott T, et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J Exp Med. 1998;187:1383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, et al. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998;188:2205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4.

    Article  CAS  PubMed  Google Scholar 

  16. D’Souza M, Fontenot AP, Mack DG, Lozupone C, Dillon S, Meditz A, et al. Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction. J Immunol. 2007;179:1979–87.

    Article  PubMed  Google Scholar 

  17. Jin HT, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc Natl Acad Sci USA. 2010;107:14733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Takamura S, Tsuji-Kawahara S, Yagita H, Akiba H, Sakamoto M, Chikaishi T, et al. Premature terminal exhaustion of Friend virus-specific effector CD8+ T cells by rapid induction of multiple inhibitory receptors. J Immunol. 2010;184:4696–707.

    Article  CAS  PubMed  Google Scholar 

  19. Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen HR, Pyle KJ, et al. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol. 2009;182:6659–69.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou Q, Munger ME, Veenstra RG, Weigel BJ, Hirashima M, Munn DH, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011;117:4501–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuzaki J, Gnjatic S, Mhawech-Fauceglia P, Beck A, Miller A, Tsuji T, et al. Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci USA. 2010;107:7875–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26:923–37.

    Article  CAS  PubMed  Google Scholar 

  23. Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, et al. TIGIT and PD-1 impair tumor antigen-specific CD8(+) T cells in melanoma patients. J Clin Invest. 2015;125:2046–58.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Novak AJ, Ansell SM. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5:e281.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang ZZ, Kim HJ, Villasboas JC, Price-Troska T, Jalali S, Wu H, et al. Mass cytometry analysis reveals that specific intratumoral CD4(+) T cell subsets correlate with patient survival in follicular lymphoma. Cell Rep. 2019;26:2178–2193.e2173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kotecha N, Krutzik PO, Irish JM. Web-based analysis and publication of flow cytometry experiments. Curr Protoc Cytom. 2010;Chapter 10:Unit10 17.

    PubMed  Google Scholar 

  27. Nowicka M, Krieg C, Crowell HL, Weber LM, Hartmann FJ, Guglietta S, et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res. 2017;6:748.

    Article  PubMed  Google Scholar 

  28. Bengsch B, Ohtani T, Khan O, Setty M, Manne S, O’Brien S, et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8 T cells. Immunity. 2018;48:1029–1045.e1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurer MJ, Ghesquieres H, Jais JP, Witzig TE, Haioun C, Thompson CA, et al. Event-free survival at 24 months is a robust end point for disease-related outcome in diffuse large B-cell lymphoma treated with immunochemotherapy. J Clin Oncol. 2014;32:1066–73.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Audia S, Rossato M, Santegoets K, Spijkers S, Wichers C, Bekker C, et al. Splenic TFH expansion participates in B-cell differentiation and antiplatelet-antibody production during immune thrombocytopenia. Blood. 2014;124:2858–66.

    Article  CAS  PubMed  Google Scholar 

  31. Ame-Thomas P, Le Priol J, Yssel H, Caron G, Pangault C, Jean R, et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 2012;26:1053–63.

    Article  CAS  PubMed  Google Scholar 

  32. Sugimoto T, Watanabe T. Follicular lymphoma: the role of the tumor microenvironment in prognosis. J Clin Exp Hematop. 2016;56:1–19.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Audia S, Rossato M, Trad M, Samson M, Santegoets K, Gautheron A, et al. B cell depleting therapy regulates splenic and circulating T follicular helper cells in immune thrombocytopenia. J Autoimmun. 2017;77:89–95.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao J, Shi J, Qu M, Zhao X, Wang H, Huang M, et al. Hyperactive follicular helper T cells contribute to dysregulated humoral immunity in patients with liver cirrhosis. Front Immunol. 2019;10:1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wickenden K, Nawaz N, Mamand S, Kotecha D, Wilson AL, Wagner SD, et al. PD1(hi) cells associate with clusters of proliferating B-cells in marginal zone lymphoma. Diagn Pathol. 2018;13:74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tang X, Yang ZZ, Kim HJ, Anagnostou T, Yu Y, Wu X, et al. Phenotype, function and clinical significance of CD26+ and CD161+ Tregs in splenic marginal zone lymphoma. Clin Cancer Res. 2022;28:4322–35.

  37. Lu T, Yu S, Liu Y, Yin C, Ye J, Liu Z, et al. Aberrant circulating Th17 cells in patients with B-cell non-hodgkin’s lymphoma. PLoS One. 2016;11:e0148044.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hus I, Bojarska-Junak A, Kaminska M, Dobrzynska-Rutkowska A, Szatan K, Szymczyk A, et al. Imbalance in circulatory iNKT, Th17 and T regulatory cell frequencies in patients with B-cell non-Hodgkin’s lymphoma. Oncol Lett. 2017;14:7957–64.

    PubMed  PubMed Central  Google Scholar 

  39. Liang M, Liwen Z, Yun Z, Yanbo D, Jianping C. The imbalance between Foxp3(+)Tregs and Th1/Th17/Th22 cells in patients with newly diagnosed autoimmune hepatitis. J Immunol Res. 2018;2018:3753081.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bai Z, Li Z, Guan T, Wang L, Wang J, Wu S, et al. Primary gastric diffuse large B-cell lymphoma: prognostic factors in the immuno-oncology therapeutics era. Turk J Haematol. 2020;37:193–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, Liu X, Qin S, Ruan G, Lu A, Zhang J, et al. A novel prognostic score including the CD4/CD8 for AIDS-related lymphoma. Front Cell Infect Microbiol. 2022;12:919446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He X, Xu C. PD-1: a driver or passenger of T cell exhaustion? Mol Cell. 2020;77:930–1.

    Article  CAS  PubMed  Google Scholar 

  43. Scott DW, Gascoyne RD. The tumour microenvironment in B cell lymphomas. Nat Rev Cancer. 2014;14:517–34.

    Article  CAS  PubMed  Google Scholar 

  44. Fowler NH, Cheah CY, Gascoyne RD, Gribben J, Neelapu SS, Ghia P, et al. Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica. 2016;101:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kevin D. Pavelko and Mr. Michael A. Strausbauch from the Mayo Clinic (MC) Immune Monitoring Core, Vernadette Simon and Rakhshan Rohakhtar from the MC Advanced Genomic Technology Center, Vivian Negron and Karla J. Kopp from the MC Pathology Research Core for the technical assistance.

Funding

This work was supported by grants from the Department of Defense (W81XWH1810650), a Research Training Award for Fellows by the American Society of Hematology, a Developmental Research Award by the Mayo Clinic/Iowa Lymphoma SPORE (P50 CA97274), a Research Grant by the Immune Monitoring Core at Mayo Clinic and the Predolin Foundation.

Author information

Authors and Affiliations

Authors

Contributions

TA, ZZY, and SMA designed and performed experiments, analyzed and interpreted data, and wrote the manuscript. SJ, HJK, XT, and DPL performed experiments and analyzed data. YY, JCP, JVB, TLP, PM, and AJN analyzed data. All authors revised the manuscript and approved its final version.

Corresponding authors

Correspondence to Zhi-Zhang Yang or Stephen M. Ansell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagnostou, T., Yang, ZZ., Jalali, S. et al. Characterization of immune exhaustion and suppression in the tumor microenvironment of splenic marginal zone lymphoma. Leukemia 37, 1485–1498 (2023). https://doi.org/10.1038/s41375-023-01911-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01911-2

This article is cited by

Search

Quick links