Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

STEM CELL BIOLOGY

The P2X4 purinergic receptor has emerged as a potent regulator of hematopoietic stem/progenitor cell mobilization and homing—a novel view of P2X4 and P2X7 receptor interaction in orchestrating stem cell trafficking

Abstract

Recent evidence indicates that extracellular adenosine triphosphate (eATP), as a major mediator of purinergic signaling, plays an important role in regulating the mobilization and homing of hematopoietic stem progenitor cells (HSPCs). In our previous work we demonstrated that eATP activates the P2X7 ion channel receptor in HSPCs and that its deficiency impairs stem cell trafficking. To learn more about the role of the P2X purinergic receptor family in hematopoiesis, we phenotyped murine and human HSPCs with respect to the seven P2X receptors and observed that, these cells also highly express P2X4 receptors, which shows ~50% sequence similarity to P2X7 subtypes, but that P2X4 cells are more sensitive to eATP and signal much more rapidly. Using the selective P2X4 receptor antagonist PSB12054 as well as P2X4-KO mice, we found that the P2X4 receptor, similar to P2X7 receptor, promotes trafficking of HSPCs in that its deficiency leads to impaired chemotaxis of HSPCs in response to a stromal-derived factor 1 (SDF-1) gradient, less effective pharmacological mobilization, and defective homing and engraftment of HSPCs after transplantation into myeloablated hosts. This correlated with a decrease in SDF-1 expression in the BM microenvironment. Overall, our results confirm the proposed cooperative dependence of both receptors in response to eATP signaling. In G-CSF-induced mobilization, a lack of one receptor is not compensated by the presence of the other one, which supports their mutual dependence in regulating HSPC trafficking.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Impact of ATP on short- and long-term engraftment of HSPCs in WT mice.
Fig. 2: Impact of P2X4 deficiency on the chemotactic activity of murine BMMNCs.
Fig. 3: The impact of P2X4 inhibition on HSPC mobilization.
Fig. 4: The impact of P2X4 and P2X7 antagonists on short- and long-term engraftment of HSPCs in WT mice.
Fig. 5: Early homing and engraftment of P2X4-KO and WT BMMNC and expression of mRNA for SDF-1, CXCR4 and components of Nlrp3 inflammasome in  P2X4-KO and WT BMMNC.

Similar content being viewed by others

References

  1. Ratajczak MZ, Adamiak M, Bujko K, Thapa A, Pensato V, Kucia M, et al. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal. 2020;16:153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adamiak M, Bujko K, Cymer M, Plonka M, Glaser T, Kucia M, et al. Novel evidence that extracellular nucleotides and purinergic signaling induce innate immunity-mediated mobilization of hematopoietic stem/progenitor cells. Leukemia 2018;32:1920–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cymer M, Brzezniakiewicz-Janus K, Bujko K, Thapa A, Ratajczak J, Anusz K, et al. Pannexin-1 channel “fuels” by releasing ATP from bone marrow cells a state of sterile inflammation required for optimal mobilization and homing of hematopoietic stem cells. Purinergic Signal. 2020;16:313–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenkiewicz AM, Adamiak M, Thapa A, Bujko K, Pedziwiatr D, Abdel-Latif AK, et al. The Nlrp3 inflammasome orchestrates mobilization of bone marrow-residing stem cells into peripheral blood. Stem Cell Rev Rep. 2019;15:391–403.

    Article  CAS  PubMed  Google Scholar 

  5. Adamiak M, Abdel-Latif A, Bujko K, Thapa A, Anusz K, Tracz M, et al. Nlrp3 inflammasome signaling regulates the homing and engraftment of hematopoietic stem cells (HSPCs) by enhancing incorporation of CXCR4 receptor into membrane lipid rafts. Stem Cell Rev Rep. 2020;16:954–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Marchi E, Orioli E, Dal Ben D, Adinolfi E. P2X7 receptor as a therapeutic target. Adv Protein Chem Struct Biol 2016;104:39–79.

    Article  CAS  PubMed  Google Scholar 

  7. Riteau N, Baron L, Villeret B, Guillou N, Savigny F, Ryffel B, et al. ATP release and purinergic signaling: a common pathway for particle-mediated inflammasome activation. Cell Death Dis. 2012;11:e403.

    Article  Google Scholar 

  8. Weinhold K, Krause-Buchholz U, Rodel G, Kasper M, Barth K. Interaction and interrelation of P2X7 and P2X4 receptor complexes in mouse lung epithelial cells. Cell Mol Life Sci.2010;67:2631–42.

    Article  CAS  PubMed  Google Scholar 

  9. Suurväli J, Boudinot P, Kanellopoulos J, Rüütel Boudinot S. P2X4: A fast and sensitive purinergic receptor. Biomed J. 2017;40:245–56.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Burnstock G, Kennedy C. P2X receptors in health and disease. Adv Pharmacol. 2011;61:333–72.

    Article  CAS  PubMed  Google Scholar 

  11. Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol. 2012;12:532–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hung SC, Choi CH, Said-Sadier N, Johnson L, Atanasova KR, Sellami H, et al. P2X4 assembles with P2X7 and pannexin-1 in gingival epithelial cells and modulates ATP-induced reactive oxygen species production and inflammasome activation. PLoS One. 2013;8:e70210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Rivero Vaccari JP, Dietrich WD, Keane RW. Activation and regulation of cellular inflammasomes: gaps in our knowledge for central nervous system injury. J Cereb Blood Flow Metab. 2014;34:369–75.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ratajczak MZ, Bujko K, Cymer M, Thapa A, Adamiak M, Ratajczak J, et al. The Nlrp3 inflammasome as a “rising star” in studies of normal and malignant hematopoiesis. Leukemia. 2020;34:1512–23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, et al. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J Cell Physiol. 2019;234:5728–40.

    Article  CAS  PubMed  Google Scholar 

  17. Bujko K, Adamiak M, Thapa A, Kucia K, Ratajczak J, Ratajczak MZ. Novel evidence that extracellular adenosine triphosphate (ATP), as a purinergic signaling mediator, activates mobilization by engaging a P2X4 ligand-gated cation channel receptor expressed on the surface of hematopoietic and innate immunity cells. Blood. 2019;134:4472.

    Article  Google Scholar 

  18. Wysoczynski M, Reca R, Lee H, Wu W, Ratajczak J, Ratajczak MZ. Defective engraftment of C3aR−/− hematopoietic stem progenitor cells shows a novel role of the C3a-C3aR axis in bone marrow homing. Leukemia. 2009;23:1455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borkowska S, Suszynska M, Mierzejewska K, Ismail A, Budkowska M, Salata D, et al. Novel evidence that crosstalk between the complement, coagulation, and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs). Leukemia. 2014;28:2148–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G, Kijowski J, et al. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol. 2002;30:450–9.

    Article  CAS  PubMed  Google Scholar 

  21. Adamiak M, Suszynska M, Abdel-Latif A, Abdelbaset-Ismail A, Ratajczak J, Ratajczak MZ. The Involvment of Hematopoietic-Specific PLC -β2 in Homing and Engraftment of Hematopoietic Stem/Progenitor Cells. Stem Cell Rev Rep. 2016;12:613–20.

    Article  CAS  PubMed  Google Scholar 

  22. Hattori M, Gouaux E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 2012;485:207–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. Pharm Rev. 2011;63:641–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64:1471–83.

    Article  CAS  PubMed  Google Scholar 

  25. Schneider G, Glaser T, Lameu C, Abdelbaset-Ismail A, Sellers ZP, Moniuszko M, et al. Extracellular nucleotides as novel, underappreciated pro-metastatic factors that stimulate purinergic signaling in human lung cancer cells. Mol Cancer. 2015;24:201.

    Article  Google Scholar 

  26. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M, et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood. 2005;105:40–8.

    Article  CAS  PubMed  Google Scholar 

  27. Craigie E, Birch RE, Unwin RJ, Wildman SS. The relationship between P2X4 and P2X7: a physiologically important interaction? Front Physiol. 2013;15:216.

    Google Scholar 

  28. Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD. Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol. 2007;72:1447–56.

    Article  CAS  PubMed  Google Scholar 

  29. Schneider M, Prudic K, Pippel A, Klapperstück M, Braam U, Müller CE, et al. Interaction of purinergic P2X4 and P2X7 receptor subunits. Front Pharmacol. 2017;22:860.

    Article  Google Scholar 

  30. Méndez-Ferrer S, Chow A, Merad M, Frenette PS. Circadian rhythms influence hematopoietic stem cells. Curr Opin Hematol. 2009;16:235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Luster AD, Alon R, von Andrian UH. Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol. 2005;6:1182–90.

    Article  CAS  PubMed  Google Scholar 

  32. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J, et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol. 2009;53:1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Massberg S, Schaerli P, Knezevic-Maramica I, Köllnberger M, Tubo N, Moseman EA, et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell. 2007;131:994–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol. 2009;107:1943–50.

    Article  PubMed  Google Scholar 

  35. Kim CH, Wu W, Wysoczynski M, Abdel-Latif A, Sunkara M, Morris A, et al. Conditioning for hematopoietic transplantation activates the complement cascade and induces a proteolytic environment in bone marrow: a novel role for bioactive lipids and soluble C5b-C9 as homing factors. Leukemia. 2012;26:106–16.

    Article  CAS  PubMed  Google Scholar 

  36. Draganov D, Gopalakrishna-Pillai S, Chen YR, Zuckerman N, Moeller S, Wang C, et al. Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep. 2015;5:16222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong K, Peoples RW, Montgomery JP, Chiang Y, Stewart RR, Weight FF, et al. Differential modulation by copper and zinc of P2X2 and P2X4 receptor function. J Neurophysiol. 1999;81:2088–94.

    Article  CAS  PubMed  Google Scholar 

  38. Kovács G, Környei Z, Tóth K, Baranyi M, Brunner J, Neubrandt M, et al. Modulation of P2X7 purinergic receptor activity by extracellular Zn2+ in cultured mouse hippocampal astroglia. Cell Calcium. 2018;75:1–13.

    Article  PubMed  Google Scholar 

  39. Amadio S, Parisi C, Piras E, Fabbrizio P, Apolloni S, Montilli C, et al. Modulation of P2X7 receptor during inflammation in multiple sclerosis. Front Immunol. 2017;8:1529.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways. Immunol Rev. 2020;297:123–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koldej R, Collins J, Ritchie D. P2X7 polymorphisms and stem cell mobilisation. Leukemia. 2018;32:2724–6.

    Article  PubMed  Google Scholar 

  42. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. 2004;35:233–45.

    Article  CAS  PubMed  Google Scholar 

  43. Gorini S, Gatta L, Pontecorvo L, Vitiello L, la Sala A. Regulation of innate immunity by extracellular nucleotides. Am J Blood Res. 2013;3:14–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Adamiak M, Bujko K, Brzezniakiewicz-Janus K, Kucia M, Ratajczak J, Ratajczak MZ. The inhibition of CD39 and CD73 cell surface ectonucleotidases by small molecular inhibitors enhances the mobilization of bone marrow residing stem cells by decreasing the extracellular level of adenosine. Stem Cell Rev Rep. 2019;15:892–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ratajczak MZ, Kucia M. The Nlrp3 inflammasome—the evolving story of its positive and negative effects on hematopoiesis. Curr Opin Hematol. 2021;28:251–61.

    Article  CAS  PubMed  Google Scholar 

  46. Schneider M, Prudic K, Pippel A, Klapperstuck M, Braam U, Muller CE, et al. Interaction of purinergic P2X4 and P2X7 receptor subunits. Front Pharmacol. 2017;8:860.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants 2R01 DK074720, Stella and Henry Hoenig Endowment, and the Polish National Center OPUS grants UMO-2018/29/B/NZ4/01470 to MZR. AT was supported by NIH T32 HL134644 Training Grant to MZR. MA is recipient of the Scholarship for Young Researchers (No. 343/E-393/STYP/13/2018) funded by the Ministry of Science and Higher Education. HU was supported by São Paulo Research Foundation (Project No. 2018/07366-4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Magda Kucia or Mariusz Z. Ratajczak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamiak, M., Bujko, K., Thapa, A. et al. The P2X4 purinergic receptor has emerged as a potent regulator of hematopoietic stem/progenitor cell mobilization and homing—a novel view of P2X4 and P2X7 receptor interaction in orchestrating stem cell trafficking. Leukemia 36, 248–256 (2022). https://doi.org/10.1038/s41375-021-01352-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01352-9

This article is cited by

Search

Quick links