Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stem cell biology

Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs

Abstract

Cyclooxygenase (COX)-dependent production of prostaglandins (PGs) is known to play important roles in tumorigenesis. PGD2 has recently emerged as a key regulator of tumor- and inflammation-associated functions. Here we show that mesenchymal stromal cells (MSCs) from patients with acute myeloid leukemia (AML) or normal MSCs overexpressing COX2 promote proliferation of co-cultured hematopoietic stem and progenitor cells (HSPCs), which can be prevented by treatment with COX2 knockdown or TM30089, a specific antagonist of the PGD2 receptor CRTH2. Mechanistically, we demonstrate that PGD2-CRTH2 signaling acts directly on type 2 innate lymphoid cells (ILC2s), potentiating their expansion and driving them to produce Interleukin-5 (IL-5) and IL-13. Furthermore, IL-5 but not IL-13 expands CD4+CD25+IL5Rα+ T regulatory cells (Tregs) and promotes HSPC proliferation. Disruption of the PGD2-activated ILC2-Treg axis by specifically blocking the PGD2 receptor CRTH2 or IL-5 impedes proliferation of normal and malignant HSPCs. Conversely, co-transfer of CD4+CD25+IL5Rα+ Tregs promotes malignant HSPC proliferation and accelerates leukemia development in xenotransplanted mice. Collectively, these results indicate that the mesenchymal source of PGD2 promotes proliferation of normal and malignant HSPCs through activation of the ILC2-Treg axis. These findings also suggest that this novel PGD2-activated ILC2-Treg axis may be a valuable therapeutic target for cancer and inflammation-associated diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mesenchymal COX2 promote proliferation of co-cultured HSPCs.
Fig. 2: CRTH2/DP2 mediates the effect of mesenchymal PGD2 in HSPC expansion.
Fig. 3: Activation of mesenchymal PGD2-CRTH2/ILC2 axis overproduces IL-5, which promotes HSPC expansion.
Fig. 4: Mesenchymal PGD2-activated ILC2s-induced IL-5 expands CD4+CD25+IL5Rα+ Tregs, which promote HSPC expansion.
Fig. 5: Mesenchymal PGD2-expanded CD4+CD25+ Tregs produce IL-10, which promotes co-cultured HSPC expansion.
Fig. 6: Mesenchymal PGD2-activated ILC2-Treg axis promotes proliferation of normal HSPCs.
Fig. 7: Mesenchymal PGD2-activated ILC2-Treg axis promotes proliferation of malignant HSPCs.
Fig. 8: Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Smyth EM, Grosser T, Wang M, Yu Y, FitzGerald GA. Prostanoids in health and disease. J Lipid Res. 2009;50:S423–8.

    PubMed  PubMed Central  Google Scholar 

  2. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem. 2000;69:145–82.

    CAS  PubMed  Google Scholar 

  3. Wu L, Amarachintha S, Xu J, Oley F Jr, Du W. Mesenchymal COX2-PG secretome engages NR4A-WNT signaling axis in haematopoietic progenitors to suppress anti-leukaemia immunity. Br J Haematol. 2018;37:937–47.

    Google Scholar 

  4. Nagata K, Hirai H, Tanaka K, Ogawa K, Aso T, Sugamura K, et al. CRTH2, an orphan receptor of T-helper-2-cells, is expressed on basophils and eosinophils and responds to mast cell-derived factor(s). FEBS Lett. 1999;459:195–9.

    CAS  PubMed  Google Scholar 

  5. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193:255–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Murata T, Lin MI, Aritake K, Matsumoto S, Narumiya S, Ozaki H, et al. Role of prostaglandin D2 receptor DP as a suppressor of tumor hyperpermeability and angiogenesis in vivo. Proc Natl Acad Sci USA. 2008;105:20009–14.

    CAS  PubMed  Google Scholar 

  7. Kostenis E, Ulven T. Emerging roles of DP and CRTH2 in allergic inflammation. Trends Mol Med. 2006;12:148–58.

    CAS  PubMed  Google Scholar 

  8. Monneret G, Gravel S, Diamond M, Rokach J, Powell WS. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood. 2001;98:1942–8.

    CAS  PubMed  Google Scholar 

  9. Xue L, Gyles SL, Wettey FR, Gazi L, Townsend E, Hunter MG, et al. Prostaglandin D2 causes preferential induction of proinflammatory Th2 cytokine production through an action on chemoattractant receptor-like molecule expressed on Th2 cells. J Immunol. 2005;175:6531–6.

    CAS  PubMed  Google Scholar 

  10. Moon TC, Campos-Alberto E, Yoshimura T, Bredo G, Rieger AM, Puttagunta L, et al. Expression of DP2 (CRTh2), a prostaglandin D2 receptor, in human mast cells. PLoS ONE. 2014;9:e108595.

    PubMed  PubMed Central  Google Scholar 

  11. Angeli V, Faveeuw C, Roye O, Fontaine J, Teissier E, Capron A, et al. Role of the parasite-derived prostaglandin D2 in the inhibition of epidermal Langerhans cell migration during schistosomiasis infection. J Exp Med. 2001;193:1135.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Faveeuw C, Gosset P, Bureau F, Angeli V, Hirai H, Maruyama T, et al. Prostaglandin D2 inhibits the production of interleukin-12 in murine dendritic cells through multiple signaling pathways. Eur J Immunol. 2003;33:889.

    CAS  PubMed  Google Scholar 

  13. Gosset P, Bureau F, Angeli V, Pichavant M, Faveeuw C, Tonnel AB, et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequence on the polarization of naive Th cells. J Immunol. 2003;170:4943.

    CAS  PubMed  Google Scholar 

  14. Cosmi L, Annunziato F, Galli MIG, Maggi RME, Nagata K, Romagnani S. CRTH2 is the most reliable marker for the detection of circulating human type 2Th and type 2 T cytotoxic cells in health and disease. Eur J Immunol. 2000;30:2972.

    CAS  PubMed  Google Scholar 

  15. Maeda S, Nakamura T, Murata T. Tumor suppressor prostaglandin D2. Oncoscience. 2014;1:396–7.

    PubMed  PubMed Central  Google Scholar 

  16. Zhang B, Bie Q, Wu P, Zhang J, You B, Shi H, et al. PTGDR2 signaling restricts the self-renewal and tumorigenesis of gastric cancer. Stem Cells. 2018;36:990–1003.

    CAS  PubMed  Google Scholar 

  17. Wojno ED, Monticelli LA, Tran SV, Alenghat T, Osborne LC, Thome JJ, et al. The prostaglandin D2 receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015;8:1313–23.

    PubMed  Google Scholar 

  18. Jandl K, Heinemann A. The therapeutic potential of CRTH2/DP2 beyond allergy and asthma. Prostaglandins Other Lipid Mediat. 2017;133:42–8.

    CAS  PubMed  Google Scholar 

  19. Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 2016;213:569–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Eberl G, Di Santo JP, Vivier E. The brave new world of innate lymphoid cells. Nat Immunol. 2015;16:1–5.

    CAS  PubMed  Google Scholar 

  21. Wang YM, Bakhtiar M, Alexander SI. ILC2: there’s a new cell in town. J Am Soc Nephrol 2017;28:1953–5.

    PubMed  PubMed Central  Google Scholar 

  22. Xue L, Salimi M, Panse I, Mjösberg JM, McKenzie AN, Spits H, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol. 2014;133:1184–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez-Cadena A, Salomé B, Lecciso M, et al. Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun. 2017;8:593.

    PubMed  PubMed Central  Google Scholar 

  24. Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature, 2008;454:445–54.

    CAS  Google Scholar 

  25. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive review and 2016 update. Blood Cancer J. 2016;6:e441.

    PubMed  PubMed Central  Google Scholar 

  26. Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Buggins AG, Milojkovic D, Arno MJ, Lea NC, Mufti GJ, Thomas NS, et al. Microenvironment produced by acute myeloid leukemia cells prevents T cell activation and proliferation by inhibition of NF-kappaB, c-Myc, and pRb pathways. J Immunol. 2001;167:6021–30.

    CAS  PubMed  Google Scholar 

  28. Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, et al. Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 1990;18:3909–16.

    Google Scholar 

  29. Szczepanski MJ, Szajnik M, Czystowska M, Mandapathil M, Strauss L, Welsh A, et al. Increased frequency and suppression by regulatory T cells in patients with acute myelogenous leukemia. Clin Cancer Res. 2009;15:3325–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang S, Han Y, Wu J, Yu K, Bi L, Zhuang Y, Xu X. Elevated frequencies of CD4(+) CD25(+) CD127lo regulatory T cells is associated to poor prognosis in patients with acute myeloid leukemia. Int J Cancer 2011;129:1373–81.

    CAS  Google Scholar 

  31. Orleans-Lindsay JK, Barber LD, Prentice HG, Lowdell MW. Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function-implications for the adoptive immunotherapy of leukaemia. Clin Exp Immunol. 2001;126:403–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Xue L, Fergusson J, Salimi M, Panse I, Ussher JE, Hegazy AN, et al. Prostaglandin D2 and leukotriene E4 synergize to stimulate diverse TH2 functions and TH2 cell/neutrophil crosstalk. J Allergy Clin Immunol. 2015;135:1358–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Uller L, Mathiesen JM, Alenmyr L, Korsgren M, Ulven T, Högberg T, et al. Antagonism of the prostaglandin D2 receptor CRTH2 attenuates asthma pathology in mouse eosinophilic airway inflammation. Respir Res. 2007;8:16.

    PubMed  PubMed Central  Google Scholar 

  34. Mjosberg JM, Trifari S, Crellin NK, Peters CP, van Drunen CM, Piet B, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.

    PubMed  Google Scholar 

  35. Tran GT, Hodgkinson SJ, Carter NM, Verma ND, Plain KM, Boyd R, et al. IL-5 promotes induction of antigen-specific CD4+CD25+T regulatory cells that suppress autoimmunity. Blood. 2012;119:4441–50.

    CAS  PubMed  Google Scholar 

  36. Tran GT, Wilcox PL, Dent LA, Robinson CM, Carter N, Verma ND, et al. Interleukin-5 mediates parasite-induced protection against experimental autoimmune encephalomyelitis: association with induction of antigen-specific CD4+CD25+ T regulatory cells. Front Immunol. 2017;8:1453.

    PubMed  PubMed Central  Google Scholar 

  37. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature. 2011;474:216–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, et al. CD150high bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell. 2018;22:445–53.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dowling MR, Kan A, Heinzel S, Marchingo JM, Hodgkin PD, Hawkins ED. Regulatory T cells suppress effector T cell proliferation by limiting division destiny. Front Immunol. 2018;9:2461.

    PubMed  PubMed Central  Google Scholar 

  40. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28:546–58.

    CAS  PubMed  Google Scholar 

  41. Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011;34:566–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Stewart CA, Metheny H, Iida N, Smith L, Hanson M, Steinhagen F, et al. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J Clin Invest. 2013;123:4859–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    PubMed  Google Scholar 

  44. Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 2010;24:1785–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Du W, Li XE, Sipple J, Pang Q. Overexpression of IL-3Rα on CD34+CD38- stem cells defines leukemia-initiating cells in Fanconi anemia AML. Blood. 2011;117:4243–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fontaine MJ, Shih H, Schäfer R, Pittenger MF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016;30:37–43.

    PubMed  Google Scholar 

  47. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13:285–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kupczyk M, Kuna P. Targeting the PGD2/CRTH2/DP1 signaling pathway in asthma and allergic disease: current status and future perspectives. Drugs. 2017;77:1281–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y, Sumi K, et al. Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol. 2006;177:2621–9.

    CAS  PubMed  Google Scholar 

  50. Lukacs NW, Berlin AA, Franz-Bacon K, Sásik R, Sprague LJ, Ly TW, et al. CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2008;295:767–79.

    Google Scholar 

  51. Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature. 2012;486:549–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol. 2013;14:1007–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, et al. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162:1078–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y, Cheng A, et al. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature. 2015;528:137–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Panduro M, Benoist C, Mathis D. Tissue tregs. Annu Rev Immunol. 2016;34:609–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lim M, Pang Y, Ma S, Hao S, Shi H, Zheng Y, et al. Altered mesenchymal niche cells impede generation of normal hematopoietic progenitor cells in leukemic bone marrow. Leukemia. 2016;30:154–62.

    CAS  PubMed  Google Scholar 

  57. Cheng H, Cheng T. ‘Waterloo’: when normal blood cells meet leukemia. Curr Opin Hematol. 2016;23:304–10.

    CAS  PubMed  Google Scholar 

  58. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, Wei YQ, Edwards CK. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kang YJ, Yang SJ, Park G, Cho B, Min CK, Kim TY, et al. A novel function of interleukin-10 promoting self-renewal of hematopoietic stem cells. Stem Cells. 2007;25:1814–22.

    CAS  PubMed  Google Scholar 

  60. Annacker O, Pimenta-Araujo R, Burlen-Defranoux O, Barbosa TC, Cumano A, Bandeira A. CD25+CD4+T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10. J Immunol. 2001;166:3008–18.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NHLBI grant (R01HL151390), NIH Tumor Microenvironment Center of Biomedical Excellence Award (P20GM121322), West Virginia University (WVU) Health Science Center (HSC) and School of Pharmacy (SOP) startup funds, a Leukemia Research Foundation (LRF) Award, and an American Cancer Society (ACS) Institutional Research Grant. We thank the BioSpecimen Processing Core at West Virginia University Cancer Center for the bone marrow samples used in this study.

Author information

Authors and Affiliations

Authors

Contributions

LW performed the research and analyzed the data; QL, ZM, FAC, MHHM performed some of the research, assist data analysis. WD designed the research, analyzed the data, and wrote the paper.

Corresponding author

Correspondence to Wei Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Lin, Q., Ma, Z. et al. Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs. Leukemia 34, 3028–3041 (2020). https://doi.org/10.1038/s41375-020-0843-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-020-0843-8

This article is cited by

Search

Quick links