Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

Prognostic impact of RAS-pathway mutations in patients with myelofibrosis

Abstract

RAS-pathway mutations are recurrent events in myeloid malignancies. However, there is limited data on the significance of RAS-pathway mutations in patients with myelofibrosis (MF). We analyzed next-generation sequencing data of 16 genes, including RAS-pathway genes, from 723 patients with primary and secondary MF across three international centers and evaluated their significance. N/KRAS variants were present in 6% of patients and were typically sub-clonal (median VAF = 20%) relative to other genes variants. RAS variants were associated with advanced MF features including leukocytosis (p = 0.02), high somatic mutation burden (p < 0.01) and the presence of established “molecular high-risk” (MHR) mutations. MF patients with N/KRAS mutations had shorter 3-year overall survival (OS) (34% vs 58%, p < 0.001) and higher incidence of acute myeloid leukemia at 3 years (18% vs 11%, p = 0.03). In a multivariate Cox model, RAS mutations were associated with decreased OS (HR 1.93, p < 0.001). We created a novel score to predict OS incorporating RAS mutations, and it predicted OS across training and validation cohorts. Patients with intermediate risk/high-risk DIPSS with RAS mutations who received ruxolitinib had a nonsignificant longer 2-year OS relative to those who did not receive ruxolitinib. These data demonstrate the importance of identifying RAS mutations in MF patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thiele J, Kvasnicka HM, Orazi A, Gianelli U, Barbui T, Barosi G, et al. Primary myelofibrosis. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. editors. WHO classification of tumors of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon, France: International Agency for Research on Cancer; 2017. p. 44–9.

  2. Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113:2895–901.

    Article  CAS  PubMed  Google Scholar 

  3. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054–61.

    Article  CAS  PubMed  Google Scholar 

  4. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352:1779–90.

    Article  CAS  PubMed  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.

    Article  CAS  PubMed  Google Scholar 

  7. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90.

    Article  CAS  PubMed  Google Scholar 

  8. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366:799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison C, Kiladjian JJ, Al-Ali HK, Gisslinger H, Waltzman R, Stalbovskaya V, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366:787–98.

    Article  CAS  PubMed  Google Scholar 

  12. Hobbs GS, Rampal RK. Clinical and molecular genetic characterization of myelofibrosis. Curr Opin Hematol. 2015;22:177–83.

    Article  CAS  PubMed  Google Scholar 

  13. Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27:1861–9.

    Article  CAS  PubMed  Google Scholar 

  14. Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, et al. MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol. 2018;36:310–8.

    Article  CAS  PubMed  Google Scholar 

  15. Bos JL. ras oncogenes in human cancer: a review. Cancer Res. 1989;49:4682–9.

    CAS  PubMed  Google Scholar 

  16. Nakagawa T, Saitoh S, Imoto S, Itoh M, Tsutsumi M, Hikiji K, et al. Multiple point mutation of N-ras and K-ras oncogenes in myelodysplastic syndrome and acute myelogenous leukemia. Oncology. 1992;49:114–22.

    Article  CAS  PubMed  Google Scholar 

  17. Ricci C, Fermo E, Corti S, Molteni M, Faricciotti A, Cortelezzi A, et al. RAS mutations contribute to evolution of chronic myelomonocytic leukemia to the proliferative variant. Clin Cancer Res. 2010;16:2246–56.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Kali A, Quintas-Cardama A, Luthra R, Bueso-Ramos C, Pierce S, Kadia T, et al. Prognostic impact of RAS mutations in patients with myelodysplastic syndrome. Am J Hematol. 2013;88:365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tyner JW, Erickson H, Deininger MW, Willis SG, Eide CA, Levine RL, et al. High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood. 2009;113:1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khan AQ, Kuttikrishnan S, Siveen KS, Prabhu KS, Shanmugakonar M, Al-Naemi HA, et al. RAS-mediated oncogenic signaling pathways in human malignancies. Semin Cancer Biol. 2018;54:1–13. https://doi.org/10.1016/j.semcancer.2018.03.001. Epub 2018 Mar 7.

  21. Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF, et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood. 2009;113:1304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood. 2006;108:2349–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lavoie H, Therrien M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol. 2015;16:281–98.

    Article  CAS  PubMed  Google Scholar 

  24. Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ, et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood. 2005;106:2113–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tsurumi S, Nakamura Y, Maki K, Omine M, Fujita K, Okamura T, et al. N-ras and p53 gene mutations in Japanese patients with myeloproliferative disorders. Am J Hematol. 2002;71:131–3.

    Article  CAS  PubMed  Google Scholar 

  26. Wang JC, Chen C. N-RAS oncogene mutations in patients with agnogenic myeloid metaplasia in leukemic transformation. Leuk Res. 1998;22:639–43.

    Article  CAS  PubMed  Google Scholar 

  27. Reilly JT, Wilson G, Barnett D, Watmore A, Potter A. Karyotypic and ras gene mutational analysis in idiopathic myelofibrosis. Br J Haematol. 1994;88:575–81.

    Article  CAS  PubMed  Google Scholar 

  28. Janssen JW, Steenvoorden AC, Lyons J, Anger B, Bohlke JU, Bos JL, et al. RAS gene mutations in acute and chronic myelocytic leukemias, chronic myeloproliferative disorders, and myelodysplastic syndromes. Proc Natl Acad Sci USA. 1987;84:9228–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tenedini E, Bernardis I, Artusi V, Artuso L, Roncaglia E, Guglielmelli P, et al. Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms. Leukemia. 2014;28:1052–9.

    Article  CAS  PubMed  Google Scholar 

  30. Brecqueville M, Rey J, Devillier R, Guille A, Gillet R, Adelaide J, et al. Array comparative genomic hybridization and sequencing of 23 genes in 80 patients with myelofibrosis at chronic or acute phase. Haematologica. 2014;99:37–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Beer PA, Delhommeau F, LeCouedic JP, Dawson MA, Chen E, Bareford D, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115:2891–900.

    Article  CAS  PubMed  Google Scholar 

  32. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schemper M, Smith TL. A note on quantifying follow-up in studies of failure time. Controlled Clin trials. 1996;17:343–6.

    Article  CAS  PubMed  Google Scholar 

  34. Grand FH, Hidalgo-Curtis CE, Ernst T, Zoi K, Zoi C, McGuire C, et al. Frequent CB mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113:6182–92.

    Article  CAS  PubMed  Google Scholar 

  35. Abu-Duhier FM, Goodeve AC, Wilson GA, Carr RS, Peake IR, Reilly JT. FLT3 internal tandem duplication mutations are rare in agnogenic myeloid metaplasia. Blood. 2002;100:364.

    Article  CAS  PubMed  Google Scholar 

  36. Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG. FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002;99:310–8.

    Article  CAS  PubMed  Google Scholar 

  39. Venton G, Courtier F, Charbonnier A, D’Incan E, Saillard C, Mohty B, et al. Impact of gene mutations on treatment response and prognosis of acute myeloid leukemia secondary to myeloproliferative neoplasms. Am J Hematol. 2018;93:330–8.

    Article  CAS  PubMed  Google Scholar 

  40. Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111:E5401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gaidano G, Guerrasio A, Serra A, Carozzi F, Cambrin GR, Petroni D, et al. Mutations in the P53 and RAS family genes are associated with tumor progression of BCR/ABL negative chronic myeloproliferative disorders. Leukemia. 1993;7:946–53.

    CAS  PubMed  Google Scholar 

  42. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wang J, Kong G, Liu Y, Du J, Chang Y-I, Tey SR, et al. NrasG12D/+ promotes leukemogenesis by aberrantly regulating hematopoietic stem cell functions. Blood. 2013;121:5203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang J, Liu Y, Li Z, Wang Z, Tan LX, Ryu M-J, et al. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood. 2011;118:368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H, et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Investig. 2004;113:528–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, et al. Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood. 2015;126:790–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11. 11/3008/08/received10/12/accepted

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salit RB, Deeg HJ. Transplant decisions in patients with myelofibrosis: should mutations be the judge? Biol Blood Marrow Transplant. 2018;24:649–58.

    Article  PubMed  Google Scholar 

  49. Mesa RA, Li C-Y, Ketterling RP, Schroeder GS, Knudson RA, Tefferi A. Leukemic transformation in myelofibrosis with myeloid metaplasia: a single-institution experience with 91 cases. Blood. 2005;105:973–7.

    Article  CAS  PubMed  Google Scholar 

  50. Borthakur G, Popplewell L, Boyiadzis M, Foran J, Platzbecker U, Vey N, et al. Activity of the oral mitogen-activated protein kinase kinase inhibitor trametinib in RAS-mutant relapsed or refractory myeloid malignancies. Cancer. 2016;122:1871–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a Federal research grant from the Brazilian Ministry of Health (PROADI-SUS SIPAR no. 25000179520/2011-36) to FPSS, PVC, and NH and a Research Grant from the AMIGOH organization (Study no. 1937-14) to FPSS; by Cancer Center Support Grant/Core Grant to Memorial Sloan Kettering Cancer Center (P30 CA008748); NCI 1K08CA188529-01 (to RKR); by MD Anderson Cancer Center support grant P30 CA016672 from the National Institutes of Health (National Cancer Institute).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fabio P. S. Santos, Raajit K. Rampal or Srdan Verstovsek.

Ethics declarations

Conflict of interest

HMK and SV have received research funding from Incyte Corp. SV has received research funding from Roche, NS Pharma, Celgene, Gilead, Promedior, CTI Biopharma Corp, Genentech, Blueprint Medicines Corp, and Novartis. SV has served as a consultant for Incyte Corp, Constellation, Pragmatist, Sierra, Novartis, Celgene. RKR has received consulting fees from Incyte corporation, Celgene corporation, Agios Pharmaceuticals, Apexx oncology, BeyondSpring, Partner Therapeutics, and Jazz Pharmaceuticals, and has received research funding from Constellation pharmaceuticals, Incyte corporation, and Stemline Therapeutics. FPSS and NH have received research funding from Novartis, Inc. FPSS served as a consultant and speaker for Novartis, Inc. The other authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, F.P.S., Getta, B., Masarova, L. et al. Prognostic impact of RAS-pathway mutations in patients with myelofibrosis. Leukemia 34, 799–810 (2020). https://doi.org/10.1038/s41375-019-0603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0603-9

This article is cited by

Search

Quick links