Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple myeloma gammopathies

Genetic and transcriptional landscape of plasma cells in POEMS syndrome

Abstract

POEMS syndrome is a rare paraneoplastic disease associated with monoclonal plasma cells; however, the pathogenic importance of plasma cells remains unclear. We performed comprehensive genetic analyses of plasma cells in 20 patients with POEMS syndrome. Whole exome sequencing was performed in 11 cases and found a total of 308 somatic mutations in 285 genes. Targeted sequencing was performed in all 20 cases and identified 20 mutations in 7 recurrently mutated genes, namely KLHL6, LTB, EHD1, EML4, HEPHL1, HIPK1, and PCDH10. None of the driver gene mutations frequently found in multiple myeloma (MM) such as NRAS, KRAS, BRAF, and TP53 was detected. Copy number analysis showed chromosomal abnormalities shared with monoclonal gammopathy of undetermined significance (MGUS), suggesting a partial overlap in the early development of MGUS and POEMS syndrome. RNA sequencing revealed a transcription profile specific to POEMS syndrome when compared with normal plasma cells, MGUS and MM. Unexpectedly, disease-specific VEGFA expression was not increased in POEMS syndrome. Our study illustrates that the genetic and transcriptional profiles of plasma cells in POEMS syndrome are distinct from MM and MGUS, indicating unique function of clonal plasma cells in its pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Takatsuki K, Sanada I. Plasma cell dyscrasia with polyneuropathy and endocrine disorder: clinical and laboratory features of 109 reported cases. Jpn J Clin Oncol. 1983;13:543–55.

    CAS  PubMed  Google Scholar 

  2. Nakanishi T, Sobue I, Toyokura Y, Nishitani H, Kuroiwa Y, Satoyoshi E, et al. The Crow-Fukase syndrome: a study of 102 cases in Japan. Neurology. 1984;34:712–20.

    Article  CAS  PubMed  Google Scholar 

  3. Nasu S, Misawa S, Sekiguchi Y, Shibuya K, Kanai K, Fujimaki Y, et al. Different neurological and physiological profiles in POEMS syndrome and chronic inflammatory demyelinating polyneuropathy. J Neurol Neurosurg Psychiatry. 2012;83:476–9.

    Article  PubMed  Google Scholar 

  4. Bardwick PA, Zvaifler NJ, Gill GN, Newman D, Greenway GD, Resnick DL. Plasma cell dyscrasia with polyneuropathy, organomegaly, endocrinopathy, M protein, and skin changes: the POEMS syndrome. Report on two cases and a review of the literature. Medicine. 1980;59:311–22.

    Article  CAS  PubMed  Google Scholar 

  5. Dispenzieri A. POEMS syndrome: update on diagnosis, risk-stratification, and management. Am J Hematol. 2015;90:951–62.

    Article  CAS  PubMed  Google Scholar 

  6. Misawa S, Sato Y, Katayama K, Hanaoka H, Sawai S, Beppu M, et al. Vascular endothelial growth factor as a predictive marker for POEMS syndrome treatment response: retrospective cohort study. BMJ Open. 2015;5:e009157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kawajiri-Manako C, Sakaida E, Ohwada C, Miyamoto T, Azuma T, Taguchi J, et al. Efficacy and long-term outcomes of autologous stem cell transplantation in POEMS syndrome: a nationwide survey in Japan. Biol Marrow Transplant. 2018;24:1180–6.

    Article  Google Scholar 

  8. Ohwada C, Sakaida E, Kawajiri-Manako C, Nagao Y, Oshima-Hasegawa N, Togasaki E, et al. Long-term evaluation of physical improvement and survival of autologous stem cell transplantation in POEMS syndrome. Blood. 2018;131:2173–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Abe D, Nakaseko C, Takeuchi M, Tanaka H, Ohwada C, Sakaida E, et al. Restrictive usage of monoclonal immunoglobulin lambda light chain germline in POEMS syndrome. Blood. 2008;112:836–9.

    Article  CAS  PubMed  Google Scholar 

  10. Martin S, Labauge P, Jouanel P, Viallard JL, Piette JC, Sauvezie B. Restricted use of Vlambda genes in POEMS syndrome. Haematologica. 2004;89:Ecr02.

    PubMed  Google Scholar 

  11. Li J, Huang Z, Duan MH, Zhang W, Chen M, Cao XX, et al. Characterization of immunoglobulin lambda light chain variable region (IGLV) gene and its relationship with clinical features in patients with POEMS syndrome. Ann Hematol. 2012;91:1251–5.

    Article  CAS  PubMed  Google Scholar 

  12. Nakayama-Ichiyama S, Yokote T, Hirata Y, Iwaki K, Akioka T, Miyoshi T, et al. Multiple cytokine-producing plasmablastic solitary plasmacytoma of bone with polyneuropathy, organomegaly, endocrinology, monoclonal protein, and skin changes syndrome. J Clin Oncol. 2012;30:e91–e94.

    Article  CAS  PubMed  Google Scholar 

  13. Wang C, Huang XF, Cai QQ, Cao XX, Cai H, Zhou D, et al. Remarkable expression of vascular endothelial growth factor in bone marrow plasma cells of patients with POEMS syndrome. Leuk Res. 2016;50:78–84.

    Article  CAS  PubMed  Google Scholar 

  14. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia. 2009;23:2210–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergsagel PL, Kuehl WM. Molecular pathogenesis and a consequent classification of multiple myeloma. J Clin Oncol. 2005;23:6333–8.

    CAS  PubMed  Google Scholar 

  16. Korde N, Kristinsson SY, Landgren O. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies. Blood. 2011;117:5573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanai K, Sawai S, Sogawa K, Mori M, Misawa S, Shibuya K, et al. Markedly upregulated serum interleukin-12 as a novel biomarker in POEMS syndrome. Neurology. 2012;79:575–82.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta-Rossi N, Storck S, Griebel PJ, Reynaud CA, Weill JC, Dahan A. Specific over-expression of deltex and a new Kelch-like protein in human germinal center B cells. Mol Immunol. 2003;39:791–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kroll J, Shi X, Caprioli A, Liu HH, Waskow C, Lin KM, et al. The BTB-kelch protein KLHL6 is involved in B-lymphocyte antigen receptor signaling and germinal center formation. Mol Cell Biol. 2005;25:8531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011;475:101–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ganapathi KA, Jobanputra V, Iwamoto F, Jain P, Chen J, Cascione L, et al. The genetic landscape of dural marginal zone lymphomas. Oncotarget. 2016;7:43052–61.

  22. Mikulasova A, Walker BA, Wardell CP, Boyle EM, Murison A, Kufova Z, et al. Somatic mutation spectrum in monoclonal gammopathy of undetermined significance compared to multiple myeloma. Blood. 2014;124:3346. ASH meeting abstract

    Google Scholar 

  23. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature. 2011;471:467–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Keim C, Kazadi D, Rothschild G, Basu U. Regulation of AID, the B-cell genome mutator. Genes Dev. 2013;27:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Palacios F, Moreno P, Morande P, Abreu C, Correa A, Porro V, et al. High expression of AID and active class switch recombination might account for a more aggressive disease in unmutated CLL patients: link with an activated microenvironment in CLL disease. Blood. 2010;115:4488–96.

    Article  CAS  PubMed  Google Scholar 

  28. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25:91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997.

    Article  CAS  PubMed  Google Scholar 

  30. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12:131–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM. Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood. 2010;115:3541–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997.

    Article  PubMed  Google Scholar 

  33. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33:3911–20.

    Article  CAS  PubMed  Google Scholar 

  34. Morin RD, Assouline S, Alcaide M, Mohajeri A, Johnston RL, Chong L, et al. Genetic landscapes of relapsed and refractory diffuse large B-Cell lymphomas. Clin Cancer Res. 2016;22:2290–2300.

    Article  CAS  PubMed  Google Scholar 

  35. Naslavsky N, Caplan S. EHD proteins: key conductors of endocytic transport. Trends Cell Biol. 2011;21:122–31.

    Article  CAS  PubMed  Google Scholar 

  36. Pollmann M, Parwaresch R, Adam-Klages S, Kruse ML, Buck F, Heidebrecht HJ. Human EML4, a novel member of the EMAP family, is essential for microtubule formation. Exp Cell Res. 2006;312:3241–51.

    Article  CAS  PubMed  Google Scholar 

  37. Choi YL, Takeuchi K, Soda M, Inamura K, Togashi Y, Hatano S, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res. 2008;68:4971–6.

    Article  CAS  PubMed  Google Scholar 

  38. Chen H, Attieh ZK, Syed BA, Kuo YM, Stevens V, Fuqua BK, et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140:1728–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rey C, Soubeyran I, Mahouche I, Pedeboscq S, Bessede A, Ichas F, et al. HIPK1 drives p53 activation to limit colorectal cancer cell growth. Cell Cycle. 2013;12:1879–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Z, Yang Z, Peng X, Li Y, Liu Q, Chen J. Nuclear factor-kappaB is involved in the protocadherin-10-mediated pro-apoptotic effect in multiple myeloma. Mol Med Rep. 2014;10:832–8.

    Article  CAS  PubMed  Google Scholar 

  41. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  42. Nagy A, Bhaduri A, Shahmarvand N, Shahryari J, Zehnder JL, Warnke RA, et al. Next-generation sequencing of idiopathic multicentric and unicentric Castleman disease and follicular dendritic cell sarcomas. Blood Adv. 2018;2:481–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dao LN, Hanson CA, Dispenzieri A, Morice WG, Kurtin PJ, Hoyer JD. Bone marrow histopathology in POEMS syndrome: a distinctive combination of plasma cell, lymphoid, and myeloid findings in 87 patients. Blood. 2011;117:6438–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kawajiri-Manako C, Mimura N, Fukuyo M, Namba H, Rahmutulla B, Nagao Y, et al. Clonal immunoglobulin lambda light-chain gene rearrangements detected by next generation sequencing in POEMS syndrome. Am J Hematol. 2018;93:1161–68.

  45. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478:64–69.

    Article  CAS  PubMed  Google Scholar 

  46. Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet. 2013;45:1293–9.

    Article  CAS  PubMed  Google Scholar 

  47. Yoshizato T, Dumitriu B, Hosokawa K, Makishima H, Yoshida K, Townsley D, et al. Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med. 2015;373:35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Rika Okada, Miki Takahashi, and Ayumi Koga for their technical assistance; and all clinical staff involved in patient management. This study was supported in part by Grants-in-Aid for Scientific Research of the Japan Society for the Promotion of Science KAKENHI #26461397 and 15K09494 as well as by Grants-in-Aid for Scientific Research on Innovative Areas “Stem Cell Aging and Disease” #25115002 from MEXT, Japan. E.S. was a recipient of JSM Research Award from the Japanese Society of Myeloma.

Author contributions

Y.N., N.M., A.I., S.O., and C.N. conceived and designed the research. Y.N., N.M., Y.I., K.K., C.K.M., N.O.H., S.T., S.S., Y.T., C.O., M.T., T.I., S.Mis., E.S., S.Ku., and C.N. managed care for patients, collected BM samples, and analyzed clinical data. Y.N., N.M., J.T., K.Yos., Y.Shiozawa, M.O., K.A., A.S., S.Ko., O.R., Y.H., D.N., Y.I., and K.K. performed experiments and statistical analyses. Y.Shiraishi, K.C., H.T., and S.Miyano developed the study methodology. Y.N., N.M., J.T., K.Yos., M.O., O.O., K.Yok., M.S., A.I., S.O., and C.N. interpreted data. Y.N. and N.M. actively wrote the manuscript. All authors reviewed the manuscript and approved the final version for submission.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoya Mimura, Seishi Ogawa or Chiaki Nakaseko.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagao, Y., Mimura, N., Takeda, J. et al. Genetic and transcriptional landscape of plasma cells in POEMS syndrome. Leukemia 33, 1723–1735 (2019). https://doi.org/10.1038/s41375-018-0348-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0348-x

This article is cited by

Search

Quick links