Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Is it time for a precision health approach to the management of newborn hyperbilirubinemia?

Abstract

Newborn hyperbilirubinemia during the first two weeks of life is one of most common problems requiring management decisions by a pediatrician. However, high bilirubin levels in the circulation have been associated with neurologic injury under a variety of conditions encountered in the newborn infant, such as hemolysis. The risk for developing dangerous hyperbilirubinemia is multifactorial and is determined by a complex set of factors related to a newborn infant’s genetic capacities as well as intra- and extrauterine exposures. To this end, a precision health approach based on the integration of prenatal genetic and postnatal diagnostic measures might improve the management of neonatal hyperbilirubinemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: BIND risk profiles.

Similar content being viewed by others

References

  1. Dennery PA, Seidman DS, Stevenson DK. Neonatal hyperbilirubinemia. N Engl J Med. 2001;344:581–90.

    Article  CAS  PubMed  Google Scholar 

  2. Kemper AR, Newman TB, Slaughter JL, Maisels MJ, Watchko JF, Downs SM, et al. Clinical Practice Guideline Revision: management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics. 2022;150:e2022058859.

    Article  PubMed  Google Scholar 

  3. Hansen TWR, Wong RJ, Stevenson DK. Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiol Rev. 2020;100:1291–346.

    Article  CAS  PubMed  Google Scholar 

  4. Tenhunen R, Marver HS, Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci USA. 1968;61:748–55.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wong RJ, Bhutani VK, Stevenson DK. The importance of hemolysis and Its clinical detection in neonates with hyperbilirubinemia. Curr Pediatr Rev. 2017;13:193–8.

    Article  CAS  PubMed  Google Scholar 

  6. Lamola AA, Bhutani VK, Du L, Castillo Cuadrado M, Chen L, Shen Z, et al. Neonatal bilirubin binding capacity discerns risk of neurological dysfunction. Pediatr Res. 2015;77:334–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bhutani VK, Wong RJ. Bilirubin neurotoxicity in preterm infants: risk and prevention. J Clin Neonatol. 2013;2:61–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhutani VK, Wong R. Bilirubin-induced neurologic dysfunction (BIND). Semin Fetal Neonatal Med. 2015;20:1.

    Article  PubMed  Google Scholar 

  9. Tidmarsh GF, Wong RJ, Stevenson DK. End-tidal carbon monoxide and hemolysis. J Perinatol. 2014;34:577–81.

    Article  CAS  PubMed  Google Scholar 

  10. Bhutani VK, Srinivas S, Castillo Cuadrado ME, Aby JL, Wong RJ, Stevenson DK. Identification of neonatal haemolysis: an approach to predischarge management of neonatal hyperbilirubinemia. Acta Paediatr. 2016;105:e189–e94.

    Article  CAS  PubMed  Google Scholar 

  11. Christensen RD, Bahr TM, Wong RJ, Vreman HJ, Bhutani VK, Stevenson DK. A “Gold Standard” test for diagnosing and quantifying hemolysis in neonates and infants. J Perinatol. 2023;43:1541–7.

    Article  PubMed  Google Scholar 

  12. Stevenson DK, Fanaroff AA, Maisels MJ, Young BW, Wong RJ, Vreman HJ, et al. Prediction of hyperbilirubinemia in near-term and term infants. Pediatrics. 2001;108:31–9.

    Article  CAS  PubMed  Google Scholar 

  13. Bhutani VK, Maisels MJ, Schutzman DL, Castillo Cuadrado ME, Aby JL, Bogen DL, et al. Identification of risk for neonatal haemolysis. Acta Paediatr. 2018;107:1350–6.

    Article  CAS  PubMed  Google Scholar 

  14. Valaes T. Problems with prediction of neonatal hyperbilirubinemia. Pediatrics. 2001;108:175–7.

    Article  CAS  PubMed  Google Scholar 

  15. Kaplan M, Hammerman C, Maisels MJ. Bilirubin genetics for the nongeneticist: hereditary defects of neonatal bilirubin conjugation. Pediatrics. 2003;111:886–93.

    Article  PubMed  Google Scholar 

  16. Watchko JF, Lin Z. Exploring the genetic architecture of neonatal hyperbilirubinemia. Semin Fetal Neonatal Med. 2010;15:169–75.

    Article  PubMed  Google Scholar 

  17. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharm Toxicol. 1997;37:517–54.

    Article  CAS  Google Scholar 

  18. Kaplan M, Wong RJ, Stevenson DK. Hemolysis and glucose-6-phosphate dehydrogenase deficiency-related neonatal hyperbilirubinemia. Neonatology. 2018;114:223–5.

    Article  CAS  PubMed  Google Scholar 

  19. Morris BH, Oh W, Tyson JE, Stevenson DK, Phelps DL, O’Shea TM, et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl J Med. 2008;359:1885–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arnold C, Tyson JE, Pedroza C, Carlo WA, Stevenson DK, Wong RJ, et al. Cycled phototherapy dose-finding study for extremely low-birth-weight infants: a randomized clinical trial. JAMA Pediatr. 2020;174:649–56.

    Article  PubMed  Google Scholar 

  21. Maines MD. Zinc•protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim Biophys Acta. 1981;673:339–50.

    Article  CAS  PubMed  Google Scholar 

  22. Stevenson DK, Rodgers PA, Vreman HJ. The use of metalloporphyrins for the chemoprevention of neonatal jaundice. Am J Dis Child. 1989;143:353–6.

    CAS  PubMed  Google Scholar 

  23. Vreman HJ, Wong RJ, Stevenson DK. Alternative metalloporphyrins for the treatment of neonatal jaundice. J Perinatol. 2001;21:S108–13.

    Article  PubMed  Google Scholar 

  24. Schulz S, Wong RJ, Vreman HJ, Stevenson DK. Metalloporphyrins – an update. Front Pharm. 2012;3:68.

    Article  Google Scholar 

  25. Kappas A, Drummond GS, Manola T, Petmezaki S, Valaes T. Sn-protoporphyrin use in the management of hyperbilirubinemia in term newborns with direct Coombs-positive ABO incompatibility. Pediatrics. 1988;81:485–97.

    CAS  PubMed  Google Scholar 

  26. Valaes T, Drummond GS, Kappas A. Control of hyperbilirubinemia in glucose-6-phosphate dehydrogenase-deficient newborns using an inhibitor of bilirubin production, Sn-mesoporphyrin. Pediatrics. 1998;101:E1.

    Article  CAS  PubMed  Google Scholar 

  27. Valaes T, Petmezaki S, Henschke C, Drummond GS, Kappas A. Control of jaundice in preterm newborns by an inhibitor of bilirubin production: studies with tin-mesoporphyrin. Pediatrics. 1994;93:1–11.

    Article  CAS  PubMed  Google Scholar 

  28. Martinez JC, Garcia HO, Otheguy LE, Drummond GS, Kappas A. Control of severe hyperbilirubinemia in full-term newborns with the inhibitor of bilirubin production Sn-mesoporphyrin. Pediatrics. 1999;103:1–5.

    Article  CAS  PubMed  Google Scholar 

  29. Bhutani VK, Poland R, Meloy LD, Hegyi T, Fanaroff AA, Maisels MJ. Clinical trial of tin mesoporphyrin to prevent neonatal hyperbilirubinemia. J Perinatol. 2016;36:533–9.

    Article  CAS  PubMed  Google Scholar 

  30. Rosenfeld WN, Hudak ML, Ruiz N, Gautam S, Jasmine Study Group. Stannsoporfin with phototherapy to treat hyperbilirubinemia in newborn hemolytic disease. J Perinatol. 2022;42:110–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kappas A. A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics. 2004;113:119–23.

    Article  PubMed  Google Scholar 

  32. Alexander D. A method for interdicting the development of severe jaundice in newborns by inhibiting the production of bilirubin. Pediatrics. 2004;113:135.

    Article  PubMed  Google Scholar 

  33. Fujioka K, Kalish F, Wong RJ, Stevenson DK. Inhibition of heme oxygenase activity using a microparticle formulation of zinc protoporphyrin in an acute hemolytic newborn mouse model. Pediatr Res. 2016;79:251–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wong RJ, Schulz S, Espadas C, Vreman HJ, Rajadas J, Stevenson DK. Effects of light on metalloporphyrin-treated newborn mice. Acta Paediatr. 2014;103:474–9.

    Article  CAS  PubMed  Google Scholar 

  35. Poudel P, Adhikari S. Efficacy and safety concerns with Sn-mesoporphyrin as an adjunct therapy in neonatal hyperbilirubinemia: a literature review. Int J Pediatr. 2022;2022:2549161.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rodgers PA, Seidman DS, Wei PL, Dennery PA, Stevenson DK. Duration of action and tissue distribution of zinc protoporphyrin in neonatal rats. Pediatr Res. 1996;39:1041–9.

    Article  CAS  PubMed  Google Scholar 

  37. Vreman HJ, Rodgers PA, Stevenson DK. Zinc protoporphyrin administration for suppression of increased bilirubin production by iatrogenic hemolysis in rhesus neonates. J Pediatr. 1990;117:292–7.

    Article  CAS  PubMed  Google Scholar 

  38. Rodgers PA, Vreman HJ, Stevenson DK. Heme catabolism in rhesus neonates inhibited by zinc protoporphyrin. Dev Pharm Ther. 1990;14:216–22.

    Article  CAS  Google Scholar 

  39. Labbe RF, Vreman HJ, Stevenson DK. Zinc protoporphyrin: a metabolite with a mission. Clin Chem. 1999;45:2060–72.

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Guo G, Li A, Cai WQ, Wang X. Challenges of phototherapy for neonatal hyperbilirubinemia (Review). Exp Ther Med. 2021;21:231.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Terrin G, Boscarino G, Di Chiara M, Iacobelli S, Faccioli F, Greco C, et al. Nutritional intake influences zinc levels in preterm newborns: an observational study. Nutrients. 2020;12:529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was secured for this study.

Author information

Authors and Affiliations

Authors

Contributions

DKS drafted the initial manuscript, revised the manuscript, and approved the final version. GSW and RJW critically reviewed the manuscript, revised the manuscript, and approved the final version as submitted. All authors approved the final manuscript as submitted and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to David K. Stevenson.

Ethics declarations

Competing interests

DKS has no conflicts of interest to disclose. GSW and RJW are co-founders of Metallic Bio.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevenson, D.K., Wells, G.S. & Wong, R.J. Is it time for a precision health approach to the management of newborn hyperbilirubinemia?. J Perinatol (2024). https://doi.org/10.1038/s41372-024-01941-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41372-024-01941-3

Search

Quick links