Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Platelet microRNAs in hypertensive patients with and without cardiovascular disease

Abstract

Platelets contain abundant microRNAs (miRs) that regulate gene expression and protein synthesis and may reflect platelet activation. We assessed platelet levels of miR-223, miR-126, and miR-22 in 82 patients with essential hypertension and 28 healthy individuals, using real-time reverse transcription polymerase chain reaction, and evaluated their relation with the patients’ clinical profile. Hypertensives had significantly lower platelet miR-22 and miR-223 levels (97.6 ± 170.3 in hypertensives versus 193.8 ± 228.9 in normotensives, p = 0.011, for miR-22; 91.3 ± 154.1 in hypertensives versus 189.9 ± 266.3 in normotensives, p = 0.022, for miR-223). Significant differences in platelet miR levels were also observed between hypertensives who had cardiovascular disease and those who did not (4.1 ± 3.6 versus 75.1 ± 85.2 for miR-126, 24.3 ± 62.9 versus 122.8 ± 187.9 for miR-22, and 10.1 ± 10.4 versus 119.3 ± 169.0 for miR-223, respectively; p < 0.001 for all). In addition, we found a significant negative correlation with systolic blood pressure (SBP) (r = −0.43, p < 0.001, for miR-22; r = −0.47, p < 0.001, for miR-223 in hypertensives; and r = −0.54, p < 0.001, for miR-126). Finally, receiver operating characteristic analysis showed that platelet miR levels were also strong prognostic markers for cardiovascular disease in these patients. In conclusion, platelet miR-22 and miR-223 levels are reduced according to the hypertension status and they are negatively correlated with SBP levels. Platelet miR levels are also related to the presence of overt cardiovascular disease in this population. Further studies are needed to elucidate the exact role of platelet miRs in platelet function and their utility as novel biomarkers of atherothrombotic risk in those patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335:765–74.

    Article  CAS  Google Scholar 

  2. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Prospective Studies Collaboration Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.

    Article  Google Scholar 

  3. Poli KA, Tofler GH, Larson MG, Evans JC, Sutherland PA, Lipinska I, et al. Association of blood pressure with fibrinolytic potential in the Framingham offspring population. Circulation. 2000;101:264–9.

    Article  CAS  Google Scholar 

  4. Spencer CG, Gurney D, Blann AD, Beevers DG, Lip GY. Anglo-Scandinavian Cardiac Outcomes Trial. Von Willebrand factor, soluble P-selectin, and target organ damage in hypertension: a substudy of the AngloScandinavian Cardiac Outcomes Trial (ASCOT). Hypertension. 2002;40:61–66. ASCOT Steering Committee.

    Article  Google Scholar 

  5. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012;93:555–62.

    Article  CAS  Google Scholar 

  6. Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. J Cell Physiol. 2016;231:25–30.

    Article  CAS  Google Scholar 

  7. Costa PM, Pedroso de Lima M. MicroRNAs as molecular targets for cancer therapy: on the modulation of microRNA expression. Pharm (Basel). 2013;6:1195–220.

    Article  Google Scholar 

  8. Pan Y, Liang H, Liu H, Li D, Chen X, Li L, et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol. 2014;192:437–46.

    Article  CAS  Google Scholar 

  9. Wang YS, Zhou J, Hong K, Cheng XS, Li YG. MicroRNA-223 displays a protective role against cardiomyocyte hypertrophy by targeting cardiac troponin I-interacting kinase. Cell Physiol Biochem. 2015;35:1546–56.

    Article  CAS  Google Scholar 

  10. Willeit P, Zampetaki A, Dudek K, Kaudewitz D, King A, Kirkby NS, et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res. 2013;112:595–600.

    Article  CAS  Google Scholar 

  11. Kadmon CS, Landers CT, Li HS, Watowich SS, Rodriguez A, King KY. MicroRNA-22 controls interferon alpha production and erythroid maturation in response to infectious stress in mice. Exp Hematol. 2017;56:7–15.

    Article  CAS  Google Scholar 

  12. Huang WQ, Wei P, Lin RQ, Huang F. Protective effects of microrna-22 against endothelial cell injury by targeting NLRP3 through suppression of the inflammasome signaling pathway in a rat model of coronary heart disease. Cell Physiol Biochem. 2017;43:346–1358.

    Google Scholar 

  13. Gidlöf O, van der Brug M, Ohman J, Gilje P, Olde B, Wahlestedt C, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013;121:3908–17.

    Article  Google Scholar 

  14. Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol. 2009;10:961–6.

    Article  Google Scholar 

  15. Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, Renard JM, et al. Prospective study on circulating microRNAs and risk of myocardial infarction. J Am Coll Cardiol. 2012;60:290–9.

    Article  CAS  Google Scholar 

  16. Zhang YY, Zhou X, Ji WJ, Shi R, Lu RY, Li JL, et al. Decreased circulating microRNA-223 level predicts high on-treatment platelet reactivity in patients with troponin-negative non-ST elevation acute coronary syndrome. J Thromb Thrombolysis. 2014;38:65–72.

    Article  CAS  Google Scholar 

  17. de Boer HC, van Solingen C, Prins J, Duijs JM, Huisman MV, et al. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur Heart J. 2013;34:3451–7.

    Article  Google Scholar 

  18. Cavarretta E, Chiariello GA, Condorelli G. Platelets, endothelium, and circulating microRNA-126 as a prognostic biomarker in cardiovascular diseases: per aspirin ad astra. Eur Heart J. 2013;34:3400–2.

    Article  Google Scholar 

  19. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  CAS  Google Scholar 

  20. Kaudewitz D, Skroblin P, Bender LH, Barwari T, Willeiy P, Pechlaner R, et al. Association of microRNAs and YRNAs with platelet function. Circ Res. 2016;118:420–32.

    Article  CAS  Google Scholar 

  21. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 Predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS ONE. 2015;10:e0145930.

    Article  Google Scholar 

  22. Shi R, Zhou X, Ji WJ, Zhang YY, Ma YQ, Zhang JQ, et al. The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. Biomed Res Int. 2015;2015:981841.

    PubMed  PubMed Central  Google Scholar 

  23. Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost. 2012;108:599–604.

    Article  CAS  Google Scholar 

  24. Edelstein LC, Bray PF. MicroRNAs in platelet production and activation. Blood. 2011;117:5289–96.

    Article  CAS  Google Scholar 

  25. Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP, Bray PF. MicroRNAs in platelet production and activation. J Thromb Haemost. 2013;11:340–50.

    Article  Google Scholar 

  26. Dangwal S, Thum T. MicroRNAs in platelet physiology and pathology. Hamostaseologie. 2013;33:17–20.

    Article  CAS  Google Scholar 

  27. Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, Jin Y, et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost. 2010;8:369–78.

    Article  CAS  Google Scholar 

  28. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  Google Scholar 

  29. Freedman JE, Larson MG, Tanriverdi K, O'Donnell CJ, Morin K, Hakanson AS, et al. Relation of platelet and leukocyte inflammatory transcripts to body mass index in the Framingham heart study. Circulation. 2010;122:119–29.

    Article  Google Scholar 

  30. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E. et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood. 2013;122:253–61.

    Article  CAS  Google Scholar 

  31. Guo H, Ingolia NT, Weissman JS, Bartel DP. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature. 2010;466:835–40.

    Article  CAS  Google Scholar 

  32. Osman A, Fälker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets. 2011;22:433–41.

    Article  CAS  Google Scholar 

  33. Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988-1991. Hypertension. 1995;25:305–13.

    Article  CAS  Google Scholar 

  34. Taylor BC, Wilt TJ, Welch HG. Impact of diastolic and systolic blood pressure on mortality: implications for the definition of “normal”. J Gen Intern Med. 2011;26:685–90.

    Article  Google Scholar 

  35. Benetos A, Thomas F, Bean K, Gautier S, Smulyan H, Guize L. Prognostic value of systolic and diastolic blood pressure in treated hypertensive men. Arch Intern Med. 2002;162:577–81.

    Article  Google Scholar 

  36. Kok MG, Mandolini C, Moerland PD, de Ronde MW, Sondermeijer BM, Halliani A, et al. Low miR-19b-1-5p expression in isolated platelets after aspirin use is related to aspirin insensitivity. Int J Cardiol. 2016;203:262–3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Marketou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marketou, M., Kontaraki, J., Papadakis, J. et al. Platelet microRNAs in hypertensive patients with and without cardiovascular disease. J Hum Hypertens 33, 149–156 (2019). https://doi.org/10.1038/s41371-018-0123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0123-5

Search

Quick links