Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between hypertension and circulating vascular-related microRNAs

Abstract

microRNAs (miRNAs) have a key role in regulating inflammation, vascular health and in turn, cardiovascular disease. Specifically, altered circulating expression of miR-17, miR-21, miR-34a, miR-92a, miR-126, miR-145, miR-146a, and miR-150 has been linked with the pathogenesis and progression of cardiovascular disease. The aim of this study was to determine whether the circulating profile of these vascular-related miRNAs is disrupted with hypertension. Thirty sedentary, middle-aged adults were studied: 15 normotensive (10M/5F; age: 56 ± 1 year; BP: 113/71 ± 2/1 mmHg) and 15 hypertensive (10M/5F; 56 ± 2 year; 140/87 ± 2/2 mmHg). All subjects were non-obese and free of other cardiometabolic disorders. Circulating miRNAs were determined in plasma using standard RT-PCR techniques with miRNA primers of interest. Expression was normalized to exogenous C. elegans miR-39 and reported as relative expression in arbitrary units (AU). Circulating expression of miR-34a (9.18 ± 0.94 vs 5.33 ± 0.91 AU) was higher (~170%; P < 0.01) whereas the expression of miR-21 (1.32 ± 0.25 vs 2.50 ± 0.29 AU), miR-126 (0.85 ± 0.10 vs 1.74 ± 0.27 AU) and miR-146a (1.50 ± 0.20 vs 3.10 ± 0.50 AU) were markedly lower (~50%, ~55%, and ~55% respectively; P < 0.05) in the hypertensive vs normotensive groups. Moreover, circulating levels of miR-34a, miR-21, and miR-126 were significantly related to systolic blood pressure (r = 0.48, r = −0.38; r = −0.48); whereas, miR-146a was significantly related to both systolic (r = −0.58) and diastolic (r = −0.55) blood pressure. There were no significant group differences in circulating miR-17, miR-92a, miR-145, and miR-150. In summary, these results suggest that hypertension, independent of other cardiometabolic risk factors, adversely affects the circulating profile of a subset of vascular-related miRNAs that have been link to CVD risk and development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Rahimi K, Emdin CA, MacMahon S. The epidemiology of blood pressure and its worldwide management. Circ Res. 2015;116:925–36.

    Article  PubMed  CAS  Google Scholar 

  2. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension, 2017;1-283

  3. Diehl KJ, Weil BR, Greiner JJ, Wright KP, Stauffer BL, DeSouza CA. Impaired endogenous fibrinolytic capacity in prehypertensive men. J Hum Hypertens. 2015;29:468–72. https://doi.org/10.1038/jhh.2014.120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Weil BR, Stauffer BL, Greiner JJ, DeSouza CA. Prehypertension is associated with impaired nitric oxide-mediated endothelium-dependent vasodilation in sedentary adults. Am J Hypertens. 2011;24:976–81.

    Article  PubMed  Google Scholar 

  5. Viereck J, Thum T. Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res. 2017;120:381–99.

    Article  PubMed  CAS  Google Scholar 

  6. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, et al. The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis. 2015;241:624–33.

    Article  PubMed  CAS  Google Scholar 

  7. Wronska A, Kurkowska-Jastrzebska I, Santulli G. Application of microRNAs in diagnosis and treatment of cardiovascular disease. Acta Physiol. 2015;213:60–83.

    Article  CAS  Google Scholar 

  8. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015;21:307–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010;50:298–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Elbehidy RM, Youssef DM, El-Shal AS, Shalaby SM, Sherbiny HS, Sherief LM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14.

    Article  PubMed  CAS  Google Scholar 

  11. Chamorro-Jorganes A, Araldi E, Suárez Y. microRNAs as pharmacological targets in endothelial cell function and dysfunction. Pharmacol Res J Ital Pharmacol Soc. 2013;75:15–27.

    CAS  Google Scholar 

  12. Paterson MR, Kriegel AJ. MiR-146a/b: a family with shared seeds and different roots. Physiol Genom. 2017;49:243–52.

    Article  CAS  Google Scholar 

  13. Chen L, Wang J, Wang B, Yang J, Gong Z, Zhao X, et al. MiR-126 inhibits vascular endothelial cell apoptosis through targeting PI3K/Akt signaling. Ann Hematol. 2016;95:365–74.

    Article  PubMed  CAS  Google Scholar 

  14. Tang S, Wang F, Shao M, Wang Y, Zhu H. MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vasc Pharmacol. 2017;88:48–55.

    Article  CAS  Google Scholar 

  15. Fukushima Y, Nakanishi M, Nonogi H, Goto Y, Iwai N. Assessment of plasma miRNAs in congestive heart failure. Circ J. 2011;75:336–40.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun. 2015;463:60–63.

    Article  PubMed  CAS  Google Scholar 

  17. Cheng HS, Besla R, Li A, Chen Z, Shikatani EA, Nazari-Jahantigh M, et al. Paradoxical suppression of atherosclerosis in the absence of microRNA-146a. Circ Res. 2017;121:354–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ma S, Tian XY, Zhang Y, Mu C, Shen H, Bismuth J, et al. E-selectin-targeting delivery of microRNAs by microparticles ameliorates endothelial inflammation and atherosclerosis. Sci Rep. 2016;6:22910. https://doi.org/10.1038/srep22910.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Singh MV, Abboud FM. Toll-like receptors and hypertension. Am J Physiol Regul Integr Comp Physiol. 2014;307:R501–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4:122ra22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. McDonald RA, White KM, Wu J, Cooley BC, Robertson KE, Halliday CA, et al. miRNA-21 is dysregulated in response to vein grafting in multiple models and genetic ablation in mice attenuates neointima formation. Eur Heart J. 2013;34:1636–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Weber M, Baker MB, Moore JP, Searles CD. MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochem Biophys Res Commun. 2010;393:643–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. John S, Schmieder RE. Potential mechanisms of impaired endothelial function in arterial hypertension and hypercholesterolemia. Curr Hypertens Rep. 2003;5:199–207.

    Article  PubMed  Google Scholar 

  24. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013;495:107–10.

    Article  PubMed  CAS  Google Scholar 

  25. Han H, Qu G, Han C, Wang Y, Sun T, Li F, et al. MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort. Exp Mol Med. 2015;47:e138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Yin H, Pickering JG. Cellular senescence and vascular disease: novel routes to better understanding and therapy. Can J Cardiol. 2016;32:612–23.

    Article  PubMed  Google Scholar 

  27. Daniel J-M, Penzkofer D, Teske R, Dutzmann J, Koch A, Bielenberg W, et al. Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury. Cardiovasc Res. 2014;103:564–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta N, et al. MicroRNA-145 targeted therapy reduces atherosclerosis. Circulation. 2012;126:S81–S90.

    Article  PubMed  CAS  Google Scholar 

  29. Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A. MicroRNA-150 modulates ischemia-induced neovascularization in atherosclerotic conditions. Arterioscler Thromb Vasc Biol. 2017;37:900–8.

    Article  PubMed  CAS  Google Scholar 

  30. Park MY, Herrmann SM, Saad A, Widmer RJ, Tang H, Zhu X-Y, et al. Circulating and renal vein levels of microRNAs in patients with renal artery stenosis. Nephrol Dial Transplant. 2015;30:480–90.

    Article  PubMed  CAS  Google Scholar 

  31. Jones Buie JN, Goodwin AJ, Cook JA, Halushka PV, Fan H. The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis. 2016;254:271–81. https://doi.org/10.1016/j.atherosclerosis.2016.09.067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Cengiz M, Karatas OF, Koparir E, Yavuzer S, Ali C, Yavuzer H, et al. Differential expression of hypertension-associated microRNAs in the plasma of patients with white coat hypertension. Medicine. 2015;94:e693. https://doi.org/10.1097/MD.0000000000000693.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Cengiz M, Yavuzer S, Avcı BK, Yürüyen M, Yavuzer H, Dikici SA, et al. Circulating miR-21 and eNOS in subclinical atherosclerosis in patients with hypertension. Clin Exp Hypertens. 2015;37:643–9.

    Article  PubMed  CAS  Google Scholar 

  34. Marques FZ, Campain AE, Tomaszewski M, Zukowska-Szczechowska E, Yang YHJ, Charchar FJ, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58:1093–8.

    Article  PubMed  CAS  Google Scholar 

  35. Nagy ZB, Barták BK, Kalmár A, Galamb O, Wichmann B, Dank M, et al. Comparison of circulating miRNAs expression alterations in matched tissue and plasma samples during colorectal cancer progression. Pathol Oncol Res 2017;1–9.

Download references

Acknowledgements

We would like to thank all subjects who participated in this study and the University of Colorado Boulder, Clinical and Translational Research Center clinical staff for their assistance.

Funding

This study was supported by the National Institutes of Health awards HL131458, HL135598, and NIH/NCATS UL1 TR001082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. DeSouza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hijmans, J.G., Diehl, K.J., Bammert, T.D. et al. Association between hypertension and circulating vascular-related microRNAs. J Hum Hypertens 32, 440–447 (2018). https://doi.org/10.1038/s41371-018-0061-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41371-018-0061-2

This article is cited by

Search

Quick links