Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process

Abstract

Endocrine disrupting chemicals (EDCs) are exogenous substances that interfere with the endocrine system and cause adverse effects. We aimed to classify the effects of 24 known EDCs, prevalent in certain occupations, according to four modes of action (estrogenic, antiestrogenic, androgenic, and/or antiandrogenic). A literature search, stratified into four types of literature was conducted (namely: national and international agency reports; review articles; primary studies; ToxCastTM). The state of the evidence of each EDC on sex hormone function was summarized and reviewed by an expert panel. For each mode of action, the experts evaluated the likelihood of endocrine disruption in five categories: “No”, “Unlikely”, “Possibly”, “Probably”, and “Yes”. Seven agents were categorized as “Yes,” or having strong evidence for their effects on sex hormone function (antiandrogenic: lead, arsenic, butylbenzyl phthalate, dibutyl phthalate, dicyclohexyl phthalate; estrogenic: nonylphenol, bisphenol A). Nine agents were categorized as “Probable,” or having probable evidence (antiandrogenic: bis(2-ethylhexyl)phthalate, nonylphenol, toluene, bisphenol A, diisononyl phthalate; androgenic: cadmium; estrogenic: copper, cadmium and; anti-estrogenic: lead). Two agents (arsenic, polychlorinated biphenyls) had opposing conclusions supporting both “probably” estrogenic and antiestrogenic effects. This synthesis will allow researchers to evaluate the health effects of selected EDCs with an added level of precision related to the mode of action.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of the expert panel evaluation.

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention (CDC). Fourth National Report on human exposure to environmental chemicals, updated tables. 2017;1. https://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Volume1_Jan2017.pdf.

  2. Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G. International Programme on Chemical Safety, Global assessment of the state‐of‐the‐science of endocrine disruptors. 2002. http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/.

  3. Ferlay J, Shin H-R, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.

    Article  CAS  PubMed  Google Scholar 

  4. Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 2008;116:39–44.

    Article  CAS  PubMed  Google Scholar 

  5. IARC. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100:11–465.

    Google Scholar 

  6. IARC. Polychlorinated biphenyls and polybrominated biphenyls. IARC Monogr Eval Carcinog Risks Hum. 2016;107:9–500.

    Google Scholar 

  7. IARC. Some organophosphate insecticides and herbicides. IARC Monogr Eval Carcinog Risks Hum. 2017;112:39–42.

  8. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society’s Second Scientific Statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:E1–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sweeney MF, Hasan N, Soto AM, Sonnenschein C. Environmental endocrine disruptors: Effects on the human male reproductive system. Rev Endocr Metab Disord. 2015;16:341–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crain DA, Janssen SJ, Edwards TM, Heindel J, Ho SM, Hunt P, et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril. 2008;90:911–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smarr MM, Kannan K, Buck Louis GM. Endocrine disrupting chemicals and endometriosis. Fertil Steril. 2016;106:959–66.

    Article  CAS  PubMed  Google Scholar 

  13. Rachon D. Endocrine disrupting chemicals (EDCs) and female cancer: Informing the patients. Rev Endocr Metab Disord. 2015;16:359–64.

    Article  CAS  PubMed  Google Scholar 

  14. Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2012;86:1491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Folkerd E, Dowsett M. Sex hormones and breast cancer risk and prognosis. Breast. 2013;22 (Suppl 2):S38–43.

    Article  PubMed  Google Scholar 

  16. Dobbs RW, Malhotra NR, Greenwald DT, Wang AY, Prins GS, Abern MR. Estrogens and prostate cancer. Prostate Cancer Prostatic Dis. 2019;22:185–94.

    Article  PubMed  Google Scholar 

  17. Chuffa LG, Lupi-Junior LA, Costa AB, Amorim JP, Seiva FR. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids. 2017;118:93–108.

    Article  CAS  PubMed  Google Scholar 

  18. Gibson DA, Simitsidellis I, Collins F, Saunders PTK. Endometrial intracrinology: oestrogens, androgens and endometrial disorders. Int J Mol Sci. 2018;19:3276. https://doi.org/10.3390/ijms19103276.

  19. White A, Ironmonger L, Steele RJC, Ormiston-Smith N, Crawford C, Seims A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer. 2018;18:906.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Clendenen TV, Koenig KL, Shore RE, Levitz M, Arslan AA, Zeleniuch-Jacquotte A. Postmenopausal levels of endogenous sex hormones and risk of colorectal cancer. Cancer Epidemiol Biomark Prev. 2009;18:275–81.

    Article  CAS  Google Scholar 

  21. Grodstein F, Newcomb PA, Stampfer MJ. Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis. Am J Med. 1999;106:574–82.

    Article  CAS  PubMed  Google Scholar 

  22. La Vecchia C, Franceschi S. Reproductive factors and colorectal cancer. Cancer Causes Control. 1991;2:193–200.

    Article  PubMed  Google Scholar 

  23. Prentice RL, Pettinger M, Beresford SA, Wactawski-Wende J, Hubbell FA, Stefanick ML, et al. Colorectal cancer in relation to postmenopausal estrogen and estrogen plus progestin in the Women’s Health Initiative clinical trial and observational study. Cancer Epidemiol Biomark Prev. 2009;18:1531–7.

    Article  CAS  Google Scholar 

  24. Combarnous Y, Nguyen TMD. Comparative overview of the mechanisms of action of hormones and endocrine disruptor compounds. Toxics. 2019;7:5. https://doi.org/10.3390/toxics7010005.

  25. Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. J Steroid Biochem Mol Biol. 1998;65:143–50.

    Article  CAS  PubMed  Google Scholar 

  26. Endocrine Society. Impact of EDCs on reproductive systems. 2019. https://www.endocrine.org/topics/edc/what-edcs-are/common-edcs/reproduction.

  27. Ropero AB, Alonso-Magdalena P, Ripoll C, Fuentes E, Nadal A. Rapid endocrine disruption: environmental estrogen actions triggered outside the nucleus. J Steroid Biochem Mol Biol. 2006;102:163–9.

    Article  CAS  PubMed  Google Scholar 

  28. Luccio-Camelo DC, Prins GS. Disruption of androgen receptor signaling in males by environmental chemicals. J Steroid Biochem Mol Biol. 2011;127:74–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Endocrine Society. Endocrinology glossary. 2018. https://www.endocrine.org/news-room/glossary.

  30. Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115:98–105.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lauretta R, Sansone A, Sansone M, Romanelli F, Appetecchia M. Endocrine disrupting chemicals: effects on endocrine glands. Front Endocrinol. 2019;10:178.

    Article  Google Scholar 

  32. Margina D, Nitulescu GM, Ungurianu A, Mesnage R, Goumenou M, Sarigiannis D, et al. Overview of the effects of chemical mixtures with endocrine disrupting activity in the context of real‑life risk simulation (RLRS): an integrative approach (review). World Acad Sci J. 2019;1:157–64.

    PubMed  PubMed Central  Google Scholar 

  33. Ribeiro E, Ladeira C, Viegas S. EDCs mixtures: a stealthy hazard for human health? Toxics. 2017;5:5.

    Article  PubMed Central  CAS  Google Scholar 

  34. Sobolewski M, Conrad K, Allen JL, Weston H, Martin K, Lawrence BP, et al. Sex-specific enhanced behavioral toxicity induced by maternal exposure to a mixture of low dose endocrine-disrupting chemicals. Neurotoxicology. 2014;45:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Woodruff TJ. Bridging epidemiology and model organisms to increase understanding of endocrine disrupting chemicals and human health effects. J Steroid Biochem Mol Biol. 2011;127:108–17.

    Article  CAS  PubMed  Google Scholar 

  36. La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16:45–57.

    Article  PubMed  CAS  Google Scholar 

  37. Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23:104–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Lavoue J. CANJEM occupational exposure information system. 2015. http://www.canjem.ca/.

  39. Brouwers MM, van Tongeren M, Hirst AA, Bretveld RW, Roeleveld N. Occupational exposure to potential endocrine disruptors: further development of a job exposure matrix. Occup Environ Med. 2009;66:607–14.

    Article  CAS  PubMed  Google Scholar 

  40. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Evaluation of certain food additives and contaminants: eightieth report of the joint FAO/WHO expert committee on food additives. Geneva, Switzerland: World Health Organization (WHO); 2016. pp. 132. WHO Technical Report Series 995.

  41. Joint FAO/WHO Expert Committee on Food Additives (JECFA). Safety evaluation of certain food additives and contaminants: prepared by the eightieth meeting of the joint FAO/WHO expert committee on food additives (JECFA). Geneva, Switzerland: World Health Organization (WHO); 2015. pp. 142. WHO Food Additives Series 71.

  42. BKH. Endocrine disruptors: study on gathering informations on 435 substances with insufficient data. 2002:Annex 7. https://ec.europa.eu/environment/chemicals/endocrine/pdf/bkh_report.pdf.

  43. BKH. Endocrine disruptors: study on gathering informations on 435 substances with insufficient data. 2002:Annex 12. https://ec.europa.eu/environment/chemicals/endocrine/pdf/bkh_report.pdf.

  44. ECHA. Evaluation of new scientific evidence concerning DINP and DIDP in relation to entry 52 of Annex XVII to REACH Regulation (EC) No 1907/2006. 2013. https://echa.europa.eu/documents/10162/31b4067e-de40-4044-93e8-9c9ff1960715.

  45. ECHA. Support document of the opinion of the member state committee for the identification of dibutyl phthalate (DBP). 2014. https://echa.europa.eu/documents/10162/e4edaefa-84a4-4972-89f0-470cd64bc949.

  46. ECHA. Opinion of the member state committee for identification of benzyl butyl phthalate (BBP) as a substance of very high concern. 2014. https://www.echa.europa.eu/documents/10162/02d9dcca-b07b-448b-8331-f7209af10d16.

  47. ECHA. Support document to the opinion of the member state committee for identification of Bis(2-ethylhexyl) phthalate (DEHP). 2014. https://echa.europa.eu/documents/10162/21833221/svhc_msc_opinion_support_document_dehp_20141211_en.pdf.

  48. ECHA. Annex XV report - Proposal for identification of a substance of very high concern on the basis of the criteria set out in REACH Article 57. 2015. https://echa.europa.eu/documents/10162/cdc07dd9-0f7e-4b07-9721-1a51c6f627af.

  49. ECHA. Prioritisation of substances of very high concern (SVHCs) for inclusion in the Authorisation List (Annex XIV). 2014. https://echa.europa.eu/documents/10162/13640/gen_approach_svhc_prior_in_recommendations_en.pdf.

  50. INSERM. Reproduction et environnement, Expertise collective. Paris: Inserm; 2011. www.inserm.fr/content/download/38030/244999/.../reproduction_et_environnement.pdf2011.

  51. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Cadmium-a metallohormone? Toxicol Appl Pharmacol. 2009;238:266–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia. 2013;18:63–73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Darbre PD. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006;26:191–7.

    Article  CAS  PubMed  Google Scholar 

  54. Noorimotlagh Z, Haghighi NJ, Ahmadimoghadam M, Rahim F. An updated systematic review on the possible effect of nonylphenol on male fertility. Environ Sci Pollut Res Int. 2017;24:3298–314.

    Article  CAS  PubMed  Google Scholar 

  55. Radke EG, Braun JM, Meeker JD, Cooper GS. Phthalate exposure and male reproductive outcomes: a systematic review of the human epidemiological evidence. Environ Int. 2018;121:764–93.

    Article  CAS  PubMed  Google Scholar 

  56. Takiguchi M, Yoshihara S. New aspects of cadmium as endocrine disruptor. Environ Sci. 2006;13:107–16.

    CAS  PubMed  Google Scholar 

  57. Witorsch RJ, Thomas JA. Personal care products and endocrine disruption: a critical review of the literature. Crit Rev Toxicol. 2010;40 (Suppl 3):1–30.

    Article  CAS  PubMed  Google Scholar 

  58. Ajayi O, Charles-Davies M, Anetor J, Ademola A. Pituitary, Gonadal, Thyroid Hormones and Endocrine Disruptors in Pre and Postmenopausal Nigerian Women with ER-, PR- and HER-2-Positive and Negative Breast Cancers. Med Sci. (Basel). 2018;6:37. https://doi.org/10.3390/medsci6020037.

  59. Akingbemi BT, Sottas CM, Koulova AI, Klinefelter GR, Hardy MP. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells. Endocrinology. 2004;145:592–603.

    Article  CAS  PubMed  Google Scholar 

  60. Bistakova J, Forgacs Z, Bartos Z, Szivosne MR, Jambor T, Knazicka Z, et al. Effects of 4-nonylphenol on the steroidogenesis of human adrenocarcinoma cell line (NCI-H295R). J Environ Sci Health A Tox Hazard Subst Environ Eng. 2017;52:221–7.

    Article  CAS  PubMed  Google Scholar 

  61. Bitsch N, Dudas C, Korner W, Failing K, Biselli S, Rimkus G, et al. Estrogenic activity of musk fragrances detected by the E-screen assay using human mcf-7 cells. Arch Environ Contam Toxicol. 2002;43:257–64.

    Article  CAS  PubMed  Google Scholar 

  62. Bonefeld-Jorgensen EC, Long M, Hofmeister MV, Vinggaard AM. Endocrine-disrupting potential of bisphenol A, bisphenol A dimethacrylate, 4-n-nonylphenol, and 4-n-octylphenol in vitro: new data and a brief review. Environ Health Perspect. 2007;115 Suppl 1:69–76.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Brehm E, Rattan S, Gao L, Flaws JA. Prenatal exposure to Di(2-Ethylhexyl) phthalate causes long-term transgenerational effects on female reproduction in mice. Endocrinology. 2018;159:795–809.

    Article  CAS  PubMed  Google Scholar 

  64. Chamkhia N, Sakly M, Rhouma KB. Male reproductive impacts of styrene in rat. Toxicol Ind Health. 2006;22:349–55.

    Article  CAS  PubMed  Google Scholar 

  65. Choe SY, Kim SJ, Kim HG, Lee JH, Choi Y, Lee H, et al. Evaluation of estrogenicity of major heavy metals. Sci Total Environ. 2003;312:15–21.

    Article  CAS  PubMed  Google Scholar 

  66. Date K, Ohno K, Azuma Y, Hirano S, Kobayashi K, Sakurai T, et al. Endocrine-disrupting effects of styrene oligomers that migrated from polystyrene containers into food. Food Chem Toxicol. 2002;40:65–75.

    Article  CAS  PubMed  Google Scholar 

  67. Davey JC, Bodwell JE, Gosse JA, Hamilton JW. Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci. 2007;98:75–86.

    Article  CAS  PubMed  Google Scholar 

  68. Denham M, Schell LM, Deane G, Gallo MV, Ravenscroft J, DeCaprio AP, et al. Relationship of lead, mercury, mirex, dichlorodiphenyldichloroethylene, hexachlorobenzene, and polychlorinated biphenyls to timing of menarche among Akwesasne Mohawk girls. Pediatrics. 2005;115:e127–34.

    Article  PubMed  Google Scholar 

  69. Di Lorenzo M, Forte M, Valiante S, Laforgia V, De Falco M. Interference of dibutylphthalate on human prostate cell viability. Ecotoxicol Environ Saf. 2018;147:565–73.

    Article  PubMed  CAS  Google Scholar 

  70. Ernst J, Jann JC, Biemann R, Koch HM, Fischer B. Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Mol Hum Reprod. 2014;20:919–28.

    Article  CAS  PubMed  Google Scholar 

  71. Eum KD, Weisskopf MG, Nie LH, Hu H, Korrick SA. Cumulative lead exposure and age at menopause in the Nurses’ Health Study cohort. Environ Health Perspect. 2014;122:229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fossato da Silva DA, Teixeira CT, Scarano WR, Favareto AP, Fernandez CD, Grotto D, et al. Effects of methylmercury on male reproductive functions in Wistar rats. Reprod Toxicol. 2011;31:431–9.

    Article  CAS  PubMed  Google Scholar 

  73. Fu Y, Jia FB, Wang J, Song M, Liu SM, Li YF, et al. Effects of sub-chronic aluminum chloride exposure on rat ovaries. Life Sci. 2014;100:61–6.

    Article  CAS  PubMed  Google Scholar 

  74. Gou YY, Lin S, Que DE, Tayo LL, Lin DY, Chen KC, et al. Estrogenic effects in the influents and effluents of the drinking water treatment plants. Environ Sci Pollut Res Int. 2016;23:8518–28.

    Article  CAS  PubMed  Google Scholar 

  75. Haghighi KS, Aminian O, FarzanehChavoshi, Bahaedini LS, Soltani S, Najarkolaei F. Relationship between blood lead level and male reproductive hormones in male lead exposed workers of a battery factory: a cross-sectional study. Iran J Reprod Med. 2013;11:673–6.

    CAS  Google Scholar 

  76. Heath JC, Abdelmageed Y, Braden TD, Goyal HO. The effects of chronic ingestion of mercuric chloride on fertility and testosterone levels in male Sprague Dawley rats. J Biomed Biotechnol. 2012;2012:815186.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hosni H, Selim O, Abbas M, Fathy A. Semen quality and reproductive endocrinal function related to blood lead levels in infertile painters. Andrologia. 2013;45:120–7.

    Article  CAS  PubMed  Google Scholar 

  78. Hu G, Li J, Shan Y, Li X, Zhu Q, Li H, et al. In utero combined di-(2-ethylhexyl) phthalate and diethyl phthalate exposure cumulatively impairs rat fetal Leydig cell development. Toxicology. 2018;395:23–33.

    Article  CAS  PubMed  Google Scholar 

  79. Huang Q, Luo L, Alamdar A, Zhang J, Liu L, Tian M, et al. Integrated proteomics and metabolomics analysis of rat testis: mechanism of arsenic-induced male reproductive toxicity. Sci Rep. 2016;6:32518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Huang X, Zhou Y, Ma J, Wang N, Zhang Z, Ji J, et al. Nitric oxide mediated effects on reproductive toxicity caused by carbon disulfide in male rats. Environ Toxicol Pharmacol. 2012;34:679–87.

    Article  CAS  PubMed  Google Scholar 

  81. Iavicoli I, Carelli G, Stanek EJ 3rd, Castellino N, Calabrese EJ. Effects of low doses of dietary lead on puberty onset in female mice. Reprod Toxicol. 2004;19:35–41.

    Article  CAS  PubMed  Google Scholar 

  82. Jambor T, Lukacova J, Tvrda E, Knazicka Z, Forgacs Z, Lukac N. The impact of 4-nonylphenol on the viability and hormone production of mouse Leydig cells. Folia Biol. 2016;62:34–9.

    CAS  Google Scholar 

  83. Jarry H, Gamer A, Wuttke W. Effects of 5-day styrene inhalation on serum LH and testosterone levels and on hypothalamic and striatal amino acid neurotransmitter concentrations in male rats. Inhal Toxicol. 2004;16:209–15.

    Article  CAS  PubMed  Google Scholar 

  84. Kim SH, Nam KH, Hwang KA, Choi KC. Influence of hexabromocyclododecane and 4-nonylphenol on the regulation of cell growth, apoptosis and migration in prostatic cancer cells. Toxicol In Vitro. 2016;32:240–7.

    Article  CAS  PubMed  Google Scholar 

  85. Knazicka Z, Lukac N, Forgacs Z, Tvrda E, Lukacova J, Slivkova J, et al. Effects of mercury on the steroidogenesis of human adrenocarcinoma (NCI-H295R) cell line. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48:348–53.

    Article  CAS  PubMed  Google Scholar 

  86. Kopp TI, Lundqvist J, Petersen RK, Oskarsson A, Kristiansen K, Nellemann C, et al. In vitro screening of inhibition of PPAR-gamma activity as a first step in identification of potential breast carcinogens. Hum Exp Toxicol. 2015;34:1106–18.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar N, Sharan S, Srivastava S, Roy P. Assessment of estrogenic potential of diethyl phthalate in female reproductive system involving both genomic and non-genomic actions. Reprod Toxicol. 2014;49:12–26.

    Article  CAS  PubMed  Google Scholar 

  88. Kumar N, Srivastava S, Roy P. Impact of low molecular weight phthalates in inducing reproductive malfunctions in male mice: special emphasis on Sertoli cell functions. Gen Comp Endocrinol. 2015;215:36–50.

    Article  CAS  PubMed  Google Scholar 

  89. Lei HL, Wei HJ, Ho HY, Liao KW, Chien LC. Relationship between risk factors for infertility in women and lead, cadmium, and arsenic blood levels: a cross-sectional study from Taiwan. BMC Public Health. 2015;15:1220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Li CJ, Yeh CY, Chen RY, Tzeng CR, Han BC, Chien LC. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J Hazard Mater. 2015;300:815–22.

    Article  CAS  PubMed  Google Scholar 

  91. Li X, Sun Z, Manthari RK, Li M, Guo Q, Wang J. Effect of gestational exposure to arsenic on puberty in offspring female mice. Chemosphere. 2018;202:119–26.

    Article  CAS  PubMed  Google Scholar 

  92. Luderer U, Morgan MS, Brodkin CA, Kalman DA, Faustman EM. Reproductive endocrine effects of acute exposure to toluene in men and women. Occup Environ Med. 1999;56:657–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Maloney EK, Waxman DJ. trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol Appl Pharmacol. 1999;161:209–18.

    Article  CAS  PubMed  Google Scholar 

  94. Martin MB, Reiter R, Pham T, Avellanet YR, Camara J, Lahm M, et al. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology. 2003;144:2425–36.

    Article  CAS  PubMed  Google Scholar 

  95. McGregor AJ, Mason HJ. Chronic occupational lead exposure and testicular endocrine function. Hum Exp Toxicol. 1990;9:371–6.

    Article  CAS  PubMed  Google Scholar 

  96. Mori N, Sawada N, Iwasaki M, Yamaji T, Goto A, Shimazu T, et al. Circulating sex hormone levels and colorectal cancer risk in Japanese postmenopausal women: the JPHC nested case-control study. Int J Cancer. 2019;145:1238–44.

    Article  CAS  PubMed  Google Scholar 

  97. Moussa H, Hachfi L, Trimeche M, Najjar MF, Sakly R. Accumulation of mercury and its effects on testicular functions in rats intoxicated orally by methylmercury. Andrologia. 2011;43:23–7.

    Article  CAS  PubMed  Google Scholar 

  98. Munoz A, Chervona Y, Hall M, Kluz T, Gamble MV, Costa M. Sex-specific patterns and deregulation of endocrine pathways in the gene expression profiles of Bangladeshi adults exposed to arsenic contaminated drinking water. Toxicol Appl Pharmacol. 2015;284:330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ohno K, Azuma Y, Date K, Nakano S, Kobayashi T, Nagao Y, et al. Evaluation of styrene oligomers eluted from polystyrene for estrogenicity in estrogen receptor binding assay, reporter gene assay, and uterotrophic assay. Food Chem Toxicol. 2003;41:131–41.

    Article  CAS  PubMed  Google Scholar 

  100. Ohno K, Azuma Y, Nakano S, Kobayashi T, Hirano S, Nobuhara Y, et al. Assessment of styrene oligomers eluted from polystyrene-made food containers for estrogenic effects in in vitro assays. Food Chem Toxicol. 2001;39:1233–41.

    Article  CAS  PubMed  Google Scholar 

  101. Ohyama KI, Nagai F, Tsuchiya Y. Certain styrene oligomers have proliferative activity on MCF-7 human breast tumor cells and binding affinity for human estrogen receptor. Environ Health Perspect. 2001;109:699–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Okazaki H, Takeda S, Matsuo S, Matsumoto M, Furuta E, Kohro-Ikeda E, et al. Inhibitory modulation of human estrogen receptor alpha and beta activities by dicyclohexyl phthalate in human breast cancer cell lines. J Toxicol Sci. 2017;42:417–25.

    Article  CAS  PubMed  Google Scholar 

  103. Ono A, Kawashima K, Sekita K, Hirose A, Ogawa Y, Saito M, et al. Toluene inhalation induced epididymal sperm dysfunction in rats. Toxicology. 1999;139:193–205.

    Article  CAS  PubMed  Google Scholar 

  104. Pant N, Upadhyay G, Pandey S, Mathur N, Saxena DK, Srivastava SP. Lead and cadmium concentration in the seminal plasma of men in the general population: correlation with sperm quality. Reprod Toxicol. 2003;17:447–50.

    Article  CAS  PubMed  Google Scholar 

  105. Parodi DA, Greenfield M, Evans C, Chichura A, Alpaugh A, Williams J, et al. Alteration of mammary gland development and gene expression by in utero exposure to arsenic. Reprod Toxicol. 2015;54:66–75.

    Article  CAS  PubMed  Google Scholar 

  106. Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, et al. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J Steroid Biochem Mol Biol. 2018;178:322–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ramdhan DH, Kamijima M, Wang D, Ito Y, Naito H, Yanagiba Y, et al. Differential response to trichloroethylene-induced hepatosteatosis in wild-type and PPARalpha-humanized mice. Environ Health Perspect. 2010;118:1557–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Rodamilans M, Martinez-Osaba MJ, To-Figueras J, Rivera-Fillat F, Torra M, Perez P, et al. Inhibition of intratesticular testosterone synthesis by inorganic lead. Toxicol Lett. 1988;42:285–90.

    Article  CAS  PubMed  Google Scholar 

  109. Rodamilans M, Osaba MJ, To-Figueras J, Rivera Fillat F, Marques JM, Perez P, et al. Lead toxicity on endocrine testicular function in an occupationally exposed population. Hum Toxicol. 1988;7:125–8.

    Article  CAS  PubMed  Google Scholar 

  110. Ronis MJ, Badger TM, Shema SJ, Roberson PK, Shaikh F. Effects on pubertal growth and reproduction in rats exposed to lead perinatally or continuously throughout development. J Toxicol Environ Health A. 1998;53:327–41.

    Article  CAS  PubMed  Google Scholar 

  111. Selevan SG, Rice DC, Hogan KA, Euling SY, Pfahles-Hutchens A, Bethel J. Blood lead concentration and delayed puberty in girls. N Engl J Med. 2003;348:1527–36.

    Article  CAS  PubMed  Google Scholar 

  112. Sokol RZ. Reversibility of the toxic effect of lead on the male reproductive axis. Reprod Toxicol. 1989;3:175–80.

    Article  CAS  PubMed  Google Scholar 

  113. Sokol RZ, Madding CE, Swerdloff RS. Lead toxicity and the hypothalamic-pituitary-testicular axis. Biol Reprod. 1985;33:722–8.

    Article  CAS  PubMed  Google Scholar 

  114. Specht IO, Toft G, Hougaard KS, Lindh CH, Lenters V, Jonsson BA, et al. Associations between serum phthalates and biomarkers of reproductive function in 589 adult men. Environ Int. 2014;66:146–56.

    Article  CAS  PubMed  Google Scholar 

  115. Sukocheva OA, Yang Y, Gierthy JF, Seegal RF. Methyl mercury influences growth-related signaling in MCF-7 breast cancer cells. Environ Toxicol. 2005;20:32–44.

    Article  CAS  PubMed  Google Scholar 

  116. Sun H, Hu C, Jia L, Zhu Y, Zhao H, Shao B, et al. Effects of aluminum exposure on serum sex hormones and androgen receptor expression in male rats. Biol Trace Elem Res. 2011;144:1050–8.

    Article  CAS  PubMed  Google Scholar 

  117. Sun X, Sun H, Yu K, Wang Z, Liu Y, Liu K, et al. Aluminum chloride causes the dysfunction of testes through inhibiting the ATPase enzyme activities and gonadotropin receptor expression in rats. Biol Trace Elem Res. 2018;183:296–304.

    Article  CAS  PubMed  Google Scholar 

  118. Sun Y, Wang W, Guo Y, Zheng B, Li H, Chen J, et al. High copper levels in follicular fluid affect follicle development in polycystic ovary syndrome patients: population-based and in vitro studies. Toxicol Appl Pharmacol. 2019;365:101–11.

    Article  CAS  PubMed  Google Scholar 

  119. Svensson BG, Nise G, Erfurth EM, Olsson H. Neuroendocrine effects in printing workers exposed to toluene. Br J Ind Med. 1992;49:402–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Takao T, Nanamiya W, Nazarloo HP, Asaba K, Hashimoto K. Possible reproductive toxicity of styrene in peripubertal male mice. Endocr J. 2000;47:343–7.

    Article  CAS  PubMed  Google Scholar 

  121. Taupeau C, Poupon J, Treton D, Brosse A, Richard Y, Machelon V. Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor beta in human ovarian granulosa cells. Biol Reprod. 2003;68:1982–8.

    Article  CAS  PubMed  Google Scholar 

  122. Telisman S, Cvitkovic P, Jurasovic J, Pizent A, Gavella M, Rocic B. Semen quality and reproductive endocrine function in relation to biomarkers of lead, cadmium, zinc, and copper in men. Environ Health Perspect. 2000;108:45–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Thoreux-Manlay A, Le Goascogne C, Segretain D, Jegou B, Pinon-Lataillade G. Lead affects steroidogenesis in rat Leydig cells in vivo and in vitro. Toxicology. 1995;103:53–62.

    Article  CAS  PubMed  Google Scholar 

  124. Thoreux-Manlay A, Velez de la Calle JF, Olivier MF, Soufir JC, Masse R, Pinon-Lataillade G. Impairment of testicular endocrine function after lead intoxication in the adult rat. Toxicology. 1995;100:101–9.

    Article  CAS  PubMed  Google Scholar 

  125. Tsukahara S, Nakajima D, Kuroda Y, Hojo R, Kageyama S, Fujimaki H. Effects of maternal toluene exposure on testosterone levels in fetal rats. Toxicol Lett. 2009;185:79–84.

    Article  CAS  PubMed  Google Scholar 

  126. Wang N, She Y, Zhu Y, Zhao H, Shao B, Sun H, et al. Effects of subchronic aluminum exposure on the reproductive function in female rats. Biol Trace Elem Res. 2012;145:382–7.

    Article  CAS  PubMed  Google Scholar 

  127. Wang YX, Zeng Q, Sun Y, You L, Wang P, Li M, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: a cross-sectional study in China. Environ Res. 2016;150:557–65.

    Article  CAS  PubMed  Google Scholar 

  128. Wijesekara GU, Fernando DM, Wijerathna S, Bandara N. Environmental and occupational exposures as a cause of male infertility. Ceylon Med J. 2015;60:52–6.

    Article  CAS  PubMed  Google Scholar 

  129. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116:1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu JJ, Wang KL, Wang SW, Hwang GS, Mao IF, Chen ML, et al. Differential effects of nonylphenol on testosterone secretion in rat Leydig cells. Toxicology. 2010;268:1–7.

    Article  CAS  PubMed  Google Scholar 

  131. Wu T, Buck GM, Mendola P. Blood lead levels and sexual maturation in U.S. girls: the Third National Health and Nutrition Examination Survey, 1988–1994. Environ Health Perspect. 2003;111:737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xu LC, Sun H, Chen JF, Bian Q, Qian J, Song L, et al. Evaluation of androgen receptor transcriptional activities of bisphenol A, octylphenol and nonylphenol in vitro. Toxicology. 2005;216:197–203.

    Article  CAS  PubMed  Google Scholar 

  133. Xu Y, Tokar EJ, Waalkes MP. Arsenic-induced cancer cell phenotype in human breast epithelia is estrogen receptor-independent but involves aromatase activation. Arch Toxicol. 2014;88:263–74.

    Article  CAS  PubMed  Google Scholar 

  134. Zeng Q, Yi H, Huang L, An Q, Wang H. Reduced testosterone and Ddx3y expression caused by long-term exposure to arsenic and its effect on spermatogenesis in mice. Environ Toxicol Pharmacol. 2018;63:84–91.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang X, Wang Y, Zhao Y, Chen X. Experimental study on the estrogen-like effect of mercuric chloride. Biometals. 2008;21:143–50.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang ZW, Zhi G, Qiao N, Kang ZL, Chen ZL, Hu LM, et al. Copper-induced spermatozoa head malformation is related to oxidative damage to testes in CD-1 mice. Biol Trace Elem Res. 2016;173:427–32.

    Article  CAS  PubMed  Google Scholar 

  137. Bay K, Main KM, Toppari J, Skakkebaek NE. Testicular descent: INSL3, testosterone, genes and the intrauterine milieu. Nat Rev Urol. 2011;8:187–96.

    Article  CAS  PubMed  Google Scholar 

  138. Emmen JM, McLuskey A, Adham IM, Engel W, Verhoef-Post M, Themmen AP, et al. Involvement of insulin-like factor 3 (Insl3) in diethylstilbestrol-induced cryptorchidism. Endocrinology. 2000;141:846–9.

    Article  CAS  PubMed  Google Scholar 

  139. Klonisch T, Muller-Huesmann H, Riedel M, Kehlen A, Bialek J, Radestock Y, et al. INSL3 in the benign hyperplastic and neoplastic human prostate gland. Int J Oncol. 2005;27:307–15.

    CAS  PubMed  Google Scholar 

  140. Lague E, Tremblay JJ. Antagonistic effects of testosterone and the endocrine disruptor mono-(2-ethylhexyl) phthalate on INSL3 transcription in Leydig cells. Endocrinology. 2008;149:4688–94.

    Article  CAS  PubMed  Google Scholar 

  141. Olokpa E, Bolden A, Stewart LV. The androgen receptor regulates PPARgamma expression and activity in human prostate cancer cells. J Cell Physiol. 2016;231:2664–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Olokpa E, Moss PE, Stewart LV. Crosstalk between the androgen receptor and PPAR gamma signaling pathways in the prostate. PPAR Res. 2017;2017:9456020.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol. 1999;13:681–91.

    Article  CAS  PubMed  Google Scholar 

  144. US EPA. Toxicity horecasting—ToxCast. 2018. https://comptox.epa.gov/dashboard.

  145. Vandenberg LN, Agerstrand M, Beronius A, Beausoleil C, Bergman A, Bero LA, et al. A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environ Health. 2016;15:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sakkiah S, Guo W, Pan B, Kusko R, Tong W, Hong H. Computational prediction models for assessing endocrine disrupting potential of chemicals. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36:192–218.

    Article  CAS  PubMed  Google Scholar 

  147. Fong J-P, Lee F-J, Lu I-S, Uang S-N, Lee C-C. Relationship between urinary concentrations ofdi(2-ethylhexyl) phthalate (DEHP) metabolites andreproductive hormones in polyvinyl chlorideproduction worker. Occup Environ Med. 2015;72:346–53.

    Article  PubMed  Google Scholar 

  148. Morgan M, Deoraj A, Felty Q, Roy D. Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol Cell Endocrinol. 2017;457:89–102.

    Article  CAS  PubMed  Google Scholar 

  149. EPA. Bis(2-ethylhexyl) phthalate (DEHP). 1992. https://www.epa.gov/sites/production/files/2016-09/documents/bis-2-ethylhexyl-phthalate.pdf.

  150. IARC. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum. 2006;87:1–471.

    Google Scholar 

  151. Shirkhanloo H, Golbabaei F, Hassani H, Eftekhar F, Kian MJ. Occupational exposure to mercury: air exposure assessment and biological monitoring based on dispersive ionic liquid-liquid microextraction. Iran J Public Health. 2014;43:793–9.

    PubMed  PubMed Central  Google Scholar 

  152. US EPA. Nonylphenol (NP) and nonylphenol ethoxylates (NPEs) action plan. 2010. https://www.epa.gov/sites/production/files/2015-09/documents/rin2070-za09_np-npes_action_plan_final_2010-08-09.pdf.

  153. Scientific Committee on Occupational Exposure Limits. Recommendation from the Scientific Committee on Occupational Exposure Limits for Copper and its inorganic compounds. SCOEL/SUM/171. 2014.

  154. EPA. Toluene. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/toluene.pdf.

  155. Canadian Centre for Occupational Health and Safety (CCOHS). OSH answers fact sheets—Alzheimer’s disease and aluminum exposure. 2019. https://www.ccohs.ca/oshanswers/diseases/alzheime.html.

  156. Riihimaki V, Aitio A. Occupational exposure to aluminum and its biomonitoring in perspective. Crit Rev Toxicol. 2012;42:827–53.

    Article  PubMed  CAS  Google Scholar 

  157. Hines CJ, Nilsen Hopf NB, Deddens JA, Calafat AM, Silva MJ, Grote AA, et al. Urinary phthalate metabolite concentrations among workers in selected industries: a pilot biomonitoring study. Ann Occup Hyg. 2009;53:1–17.

    CAS  PubMed  Google Scholar 

  158. EPA. Styrene 1992. https://www.epa.gov/sites/production/files/2016-09/documents/styrene.pdf.

  159. IARC. Bisphenol A diglycidyl ether. IARC Monogr Eval Carcinog Risks Hum. 1999;71:1285–9.

    Google Scholar 

  160. IARC. Butyl benzyl phthalate. IARC Monogr Eval Carcinog Risks Hum. 1999;73:155–29.

    Google Scholar 

  161. IARC. Cadmium and cadmium compounds. IARC Monogr Eval Carcinog Risks Hum. 1993;58:119–237.

    Google Scholar 

  162. Centers for Disease Control and Prevention (CDC). Carbon disulfide. 2019. https://www.cdc.gov/niosh/topics/carbon-disulfide/default.html.

  163. European Commission (EC). European Union Risk Assessment Report—dibutyl phthalate. 2004;29:41–110.

  164. US EPA. Phthalates action plan. 2012. https://www.epa.gov/sites/production/files/2015-09/documents/phthalates_actionplan_revised_2012-03-14.pdf.

  165. Hines CJ, Hopf NB, Deddens JA, Silva MJ, Calafat AM. Occupational exposure to diisononyl phthalate (DiNP) in polyvinyl chloride processing operations. Int Arch Occup Environ Health. 2012;85:317–25.

    Article  CAS  PubMed  Google Scholar 

  166. Consumer Product Safety Commission of United States (CPSC). Review of exposure data and assessments for select dialkyl ortho-phthalates. 2010. https://www.cpsc.gov/s3fs-public/pthalexp.pdf.

  167. Agency for Toxic Substances and Disease Registry (ATSDR). Case Studies in Environmental Medicine (CSEM) ethylene glycol and propylene glycol toxicity. 2007. https://www.atsdr.cdc.gov/csem/csem.asp?csem=12&po=6.

  168. Committee for Recommendation of Occupational Exposure Limits, Azuma K, Endo G, Endo Y, Fukushima T, Hara K, et al. Occupational exposure limits for ethylene glycol monobutyl ether, isoprene, isopropyl acetate and propyleneimine, and classifications on carcinogenicity, occupational sensitizer and reproductive toxicant. J Occup Health. 2017;59:364–6.

    Article  Google Scholar 

  169. Faroon, Obaid M, Samuel Keith, L, Smith-Simon, Cassandra, De Rosa, Christopher T, World Health Organization, et al. Polychlorinated biphenyls: human health aspects. World Health Organization. 2003. https://apps.who.int/iris/handle/10665/42640.

  170. Centers for Disease Control and Prevention (CDC). Tetrachloroethylene (Perchloroethylene). 2019. https://www.cdc.gov/niosh/topics/tetrachloro/default.html.

  171. EPA. Phenol. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/phenol.pdf.

  172. EPA. Trichloroethylene. 1992. https://www.epa.gov/sites/production/files/2016-09/documents/trichloroethylene.pdf.

  173. EPA. Xylenes (Mixed Isomers). 1992. https://www.epa.gov/sites/production/files/2016-09/documents/xylenes.pdf.

Download references

Acknowledgements

VH holds a Sex and Gender Science Chair in Cancer Research from the Canadian Institutes for Health Research. She is currently supported by the Cancer Research Society, Fonds de recherche du Québec—Santé (FRQS) and Ministère de l’Économie, de la Science et de l’Innovation du Québec (MESI).

Funding

Funding for the study was provided by Canadian Institutes for Health Research (Funding Reference Number 156077).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ho.

Ethics declarations

Conflict of interest

JH declared working relations with the styrene industry and users, thus, did not contribute to the review on styrene. All other authors have no conflicts of interest to declare.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prichystalova, R., Caron-Beaudoin, E., Richardson, L. et al. An approach to classifying occupational exposures to endocrine disrupting chemicals by sex hormone function using an expert judgment process. J Expo Sci Environ Epidemiol 31, 753–768 (2021). https://doi.org/10.1038/s41370-020-0253-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41370-020-0253-z

Keywords

This article is cited by

Search

Quick links