Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Obesity-related glomerulopathy is associated with elevated WT1 expression in podocytes

Abstract

Background

The prevalence of obesity is increasing worldwide at an alarming rate. In addition to the increased incidence of cardiovascular and metabolic diseases, obesity is the most potent risk factor for developing chronic kidney disease (CKD). Although systemic events such as hemodynamic factors, metabolic effects, and lipotoxicity were implicated in the pathophysiology of obesity-related glomerulopathy (ORG) and kidney dysfunction, the precise mechanisms underlying the association between obesity and CKD remain unexplored.

Methods

In this study, we employed spontaneous WNIN/Ob rats to investigate the molecular events that promote ORG. Further, we fed a high-fat diet to mice and analyzed the incidence of ORG. Kidney functional parameters, micro-anatomical manifestations, and podocyte morphology were investigated in both experimental animal models. Gene expression analysis in the rodents was compared with human subjects by data mining using Nephroseq and Kidney Precision Medicine Project database.

Results

WNIN/Ob rats were presented with proteinuria and several glomerular deformities, such as adaptive glomerulosclerosis, decreased expression of podocyte-specific markers, and effacement of podocyte foot process. Similarly, high-fat-fed mice also showed glomerular injury and proteinuria. Both experimental animal models showed increased expression of podocyte-specific transcription factor WT1. The altered expression of putative targets of WT1 such as E-cadherin, podocin (reduced), and α-SMA (increased) suggests elevated expression of WT1 in podocytes elicits mesenchymal phenotype. Curated data from CKD patients revealed increased expression of WT1 in the podocytes and its precursors, parietal epithelial cells.

Conclusion

WT1 is crucial during nephron development and has minimal expression in adult podocytes. Our study discovered elevated expression of WT1 in podocytes in obesity settings. Our analysis suggests a novel function for WT1 in the pathogenesis of ORG; however, the precise mechanism of WT1 induction and its involvement in podocyte pathobiology needs further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WNIN/Ob rats are presented with normoglycemia but hyperinsulinemia.
Fig. 2: WNIN/Ob rats have impaired kidney function.
Fig. 3: WNIN/Ob rats exhibit glomerulosclerosis.
Fig. 4: Podocyte injury in WNIN/Ob rats.
Fig. 5: WNIN/Ob rats show elevated expression of mesenchymal markers.
Fig. 6: Glomerular injury and proteinuria in high-fat-diet-fed mice are concomitant with induction of WT1.
Fig. 7: Expression of WT1 in high-fat-diet-fed mice.
Fig. 8: Co-expression of mesenchymal markers with WT1 in CKD.
Fig. 9: WT1 promoter analysis revealed SREBFs binding sites.

Similar content being viewed by others

Data availability

The data used in this study are available from the corresponding author on reasonable request.

References

  1. Tsuboi N, Okabayashi Y, Shimizu A, Yokoo T. The renal pathology of obesity. Kidney Int Rep. 2017;2:251–60.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.

    Article  PubMed  Google Scholar 

  3. Di Angelantonio E, Bhupathiraju SN, Wormser D, Gao P, Kaptoge S, De Gonzalez AB, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet. 2016;388:776–86.

    Article  PubMed  Google Scholar 

  4. D’Agati VD, Chagnac A, De Vries AP, Levi M, Porrini E, Herman-Edelstein M, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12:453–71.

    Article  PubMed  Google Scholar 

  5. Wang Y, Beydoun MA, Liang L, Caballero B, Kumanyika SK. Will all Americans become overweight or obese? Estimating the progression and cost of the US obesity epidemic. Obesity. 2008;16:2323–30.

    Article  PubMed  Google Scholar 

  6. Kobori H, Ozawa Y, Suzaki Y, Prieto-Carrasquero MC, Nishiyama A, Shoji T, et al. Young Scholars Award Lecture: Intratubular angiotensinogen in hypertension and kidney diseases. Oxford University Press; 2006.

  7. Nagase M, Yoshida S, Shibata S, Nagase T, Gotoda T, Ando K, et al. Enhanced aldosterone signaling in the early nephropathy of rats with metabolic syndrome: possible contribution of fat-derived factors. J Am Soc Nephrol. 2006;17:3438–46.

    Article  CAS  PubMed  Google Scholar 

  8. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U. Glomerular hemodynamics in severe obesity. Am J Physiol-Renal Physiol. 2000;278:F817–F22.

    Article  CAS  PubMed  Google Scholar 

  9. Lew Q-LJ, Jafar TH, Talaei M, Jin A, Chow KY, Yuan J-M, et al. Increased body mass index is a risk factor for end-stage renal disease in the Chinese Singapore population. Kidney Int. 2017;92:979–87.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hsu C-Y, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Internal Med. 2006;144:21–8.

    Article  Google Scholar 

  11. Iseki K, Ikemiya Y, Kinjo K, Inoue T, Iseki C, Takishita S. Body mass index and the risk of development of end-stage renal disease in a screened cohort. Kidney Int. 2004;65:1870–6.

    Article  PubMed  Google Scholar 

  12. Lin X, Li H. Obesity: epidemiology, pathophysiology, and therapeutics. Front Endocrinol. 2021;12:706978.

    Article  Google Scholar 

  13. Okabayashi Y, Tsuboi N, Sasaki T, Haruhara K, Kanzaki G, Koike K, et al. Glomerulopathy associated with moderate obesity. Kidney Int Rep. 2016;1:250–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martínez-Montoro JI, Morales E, Cornejo-Pareja I, Tinahones FJ, Fernández-García JC. Obesity-related glomerulopathy: Current approaches and future perspectives. Obesity Rev. 2022;23:e13450.

    Article  Google Scholar 

  15. Wang Y, Chen X, Song Y, Caballero B, Cheskin L. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int. 2008;73:19–33.

    Article  CAS  PubMed  Google Scholar 

  16. Hoy WE, Hughson MD, Zimanyi M, Samuel T, Douglas-Denton R, Holden L, et al. Distribution of volumes of individual glomeruli in kidneys at autopsy: association with age, nephron number, birth weight and body mass index. Clin Nephrol. 2010;74:S105–12.

    PubMed  Google Scholar 

  17. Mandal R, Loeffler AG, Salamat S, Fritsch MK. Organ weight changes associated with body mass index determined from a medical autopsy population. Am J Forensic Med Pathol. 2012;33:382–9.

    Article  PubMed  Google Scholar 

  18. Tobar A, Ori Y, Benchetrit S, Milo G, Herman-Edelstein M, Zingerman B, et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PloS one. 2013;8:e75547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kambham N, Markowitz GS, Valeri AM, Lin J, D’Agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509.

    Article  CAS  PubMed  Google Scholar 

  20. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, et al. Podocyte depletion causes glomerulosclerosis: Diphtheria toxin–induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J Am Soc Nephrol. 2005;16:2941–52.

    Article  CAS  PubMed  Google Scholar 

  21. Wiggins JE, Goyal M, Sanden SK, Wharram BL, Shedden KA, Misek DE, et al. Podocyte hypertrophy,“adaptation,” and “decompensation” associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction. J Am Soc Nephrol. 2005;16:2953–66.

    Article  PubMed  Google Scholar 

  22. Hamdy O, Porramatikul S, Al-Ozairi E. Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diab Rev. 2006;2:367–73.

    Article  Google Scholar 

  23. Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity. J Am Soc Nephrol. 2004;15:2792–800.

    Article  CAS  PubMed  Google Scholar 

  24. Bohle A, Kressel G, Müller C, Müller G. The pathogenesis of chronic renal failure. Pathol-Res Prac. 1989;185:421–40.

    Article  CAS  Google Scholar 

  25. Kalashikam RR, Battula KK, Kirlampalli V, Friedman JM, Nappanveettil G. Obese locus in WNIN/obese rat maps on chromosome 5 upstream of leptin receptor. PLoS One. 2013;8:e77679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reddy GB, Vasireddy V, Mandal MNA, Tiruvalluru M, Wang XF, Jablonski MM, et al. A novel rat model with obesity-associated retinal degeneration. Investig Ophthalmol Visual Sci. 2009;50:3456–63.

    Article  Google Scholar 

  27. Giridharan N. Animal models of obesity & their usefulness in molecular approach to obesity. Indian J Med Res. 1998;108:225.

    CAS  PubMed  Google Scholar 

  28. Harishankar N, Kumar PU, Sesikeran B, Giridharan N. Obesity associated pathophysiological & histological changes in WNIN obese mutant rats. The. Indian J Med Res. 2011;134:330.

    PubMed  PubMed Central  Google Scholar 

  29. Kallamadi PR, Esari D, Addi UR, Kesavan R. Obesity Associated with Prediabetes Increases the Risk of Breast Cancer Development and Progression-A Study on an Obese Rat Model with Impaired Glucose Tolerance. Int J Mol Sci. 2023;24:11441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reddy SS, Shruthi K, Reddy VS, Raghu G, Suryanarayana P, Giridharan N, et al. Altered ubiquitin-proteasome system leads to neuronal cell death in a spontaneous obese rat model. Biochimica et Biophysica Acta (BBA)-Gen Subjects. 2014;1840:2924–34.

    Article  CAS  Google Scholar 

  31. Yang H, Xie T, Li D, Du X, Wang T, Li C, et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-kappaB/TNF-alpha pathway. Mol Metab. 2019;23:24–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang Y, Xu C, Ye Q, Tong L, Jiang H, Zhu X, et al. Podocyte apoptosis in diabetic nephropathy by BASP1 activation of the p53 pathway via WT1. Acta Physiol (Oxf). 2021;232:e13634.

    Article  CAS  PubMed  Google Scholar 

  33. Nakuluri K, Mukhi D, Nishad R, Saleem MA, Mungamuri SK, Menon RK, et al. Hypoxia induces ZEB2 in podocytes: Implications in the pathogenesis of proteinuria. J Cell Physiol. 2019;234:6503–18.

    Article  CAS  PubMed  Google Scholar 

  34. Kolligundla LP, Kavvuri R, Singh AK, Mukhi D, Pasupulati AK. Metformin prevents hypoxia‐induced podocyte injury by regulating the ZEB2/TG2 axis. Nephrology. 2023;28:60–71.

    Article  CAS  PubMed  Google Scholar 

  35. Bhutda S, Surve MV, Anil A, Kamath K, Singh N, Modi D, et al. Histochemical staining of collagen and identification of its subtypes by picrosirius red dye in mouse reproductive tissues. Bio-protocol. 2017;7:e2592.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lu C-C, Wang G-H, Lu J, Chen P-P, Zhang Y, Hu Z-B, et al. Role of podocyte injury in glomerulosclerosis. Renal fibrosis: Mech Therap. 2019;1165:195–232.

    Article  CAS  Google Scholar 

  37. Ying Q, Wu G. Molecular mechanisms involved in podocyte EMT and concomitant diabetic kidney diseases: an update. Renal failure. 2017;39:474–83.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Investig. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sontake V, Kasam RK, Sinner D, Korfhagen TR, Reddy GB, White ES, et al. Wilms’ tumor 1 drives fibroproliferation and myofibroblast transformation in severe fibrotic lung disease. JCI insight. 2018;3:e121252.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ. Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis. Kidney Int. 2015;88:999–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romagnani P Parietal epithelial cells: their role in health and disease. Experimental Models for Renal Diseases. 169: Karger Publishers; 2011. p. 23-36.

  42. Lazzeri E, Romagnani P. Differentiation of parietal epithelial cells into podocytes. Nat Rev Nephrol. 2015;11:7–8.

    Article  CAS  PubMed  Google Scholar 

  43. Li Z-H, Guo X-Y, Quan X-Y, Yang C, Liu Z-j, Su H-Y, et al. The role of parietal epithelial cells in the pathogenesis of podocytopathy. Front Physiol. 2022;13:832772.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rae FK, Martinez G, Gillinder KR, Smith A, Shooter G, Forrest AR, et al. Anlaysis of complementary expression profiles following WT1 induction versus repression reveals the cholesterol/fatty acid synthetic pathways as a possible major target of WT1. Oncogene. 2004;23:3067–79.

    Article  CAS  PubMed  Google Scholar 

  45. Kalashikam RR, Inagadapa PJ, Thomas AE, Jeyapal S, Giridharan NV, Raghunath M. Leptin gene promoter DNA methylation in WNIN obese mutant rats. Lipids Health Dis. 2014;13:1–8.

    Article  Google Scholar 

  46. Pasupulati AK, Kilari S, Sahay M. Endocrine abnormalities and renal complications. Front Endocrinol. 2023;14:1274669.

    Article  Google Scholar 

  47. Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, et al. WT-1 is required for early kidney development. Cell. 1993;74:679–91.

    Article  CAS  PubMed  Google Scholar 

  48. Pelletier J, Bruening W, Kashtan CE, Mauer SM, Manivel JC, Striegel JE, et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell. 1991;67:437–47.

    Article  CAS  PubMed  Google Scholar 

  49. Habib R, Loirat C, Gubler M, Niaudet P, Bensman A, Levy M, et al. The nephropathy associated with male pseudohermaphroditism and Wilms’ tumor (Drash syndrome): a distinctive glomerular lesion-report of 10 cases. Clin Nephrol. 1985;24:269–78.

    CAS  PubMed  Google Scholar 

  50. Pasupulati AK. Podocyte developmental pathways in diabetic nephropathy: A spotlight on Notch signaling. Diab Nephropath. 2022;2:1–6.

    Article  Google Scholar 

  51. Berry RL, Ozdemir DD, Aronow B, Lindström NO, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms’ tumours from a developmental series of Wt1-mutant mice. Dis Models Mech. 2015;8:903–17.

    CAS  Google Scholar 

  52. Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999;126:1845–57.

    Article  CAS  PubMed  Google Scholar 

  53. Hammes A, Guo J-K, Lutsch G, Leheste J-R, Landrock D, Ziegler U, et al. Two splice variants of the Wilms’ tumor 1 gene have distinct functions during sex determination and nephron formation. Cell. 2001;106:319–29.

    Article  CAS  PubMed  Google Scholar 

  54. Menke AL, IJpenberg A, Fleming S, Ross A, Medine CN, Patek CE, et al. The wt1‐heterozygous mouse; a model to study the development of glomerular sclerosis. J Pathol: A J Pathol Soc Great Britain Ireland. 2003;200:667–74.

    Article  CAS  Google Scholar 

  55. Ratelade J, Arrondel C, Hamard G, Garbay S, Harvey S, Biebuyck N, et al. A murine model of Denys–Drash syndrome reveals novel transcriptional targets of WT1 in podocytes. Human Mol Genet. 2010;19:1–15.

    Article  CAS  Google Scholar 

  56. Guo J-K, Menke AL, Gubler M-C, Clarke AR, Harrison D, Hammes A, et al. WT1 is a key regulator of podocyte function: reduced expression levels cause crescentic glomerulonephritis and mesangial sclerosis. Hum Mol Genet. 2002;11:651–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gao F, Maiti S, Sun G, Ordonez NG, Udtha M, Deng JM, et al. The Wt1+/R394W mouse displays glomerulosclerosis and early-onset renal failure characteristic of human Denys-Drash syndrome. Mol Cell Biol. 2004;24:9899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toska E, Roberts SG. Mechanisms of transcriptional regulation by WT1 (Wilms’ tumour 1). Biochem J. 2014;461:15–32.

    Article  CAS  PubMed  Google Scholar 

  59. Kriz W, Elger M, Nagata M, Kretzler M, Uiker S, Koeppen-Hageman I, et al. The role of podocytes in the development of glomerular sclerosis. Kidney Int Suppl. 1994;45:S64–72.

    CAS  PubMed  Google Scholar 

  60. Kriz W, Gretz N, Lemley KV. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 1998;54:687–97.

    Article  CAS  PubMed  Google Scholar 

  61. Kriz W, Hosser H, Hähnel B, Gretz N, Provoost AP. From segmental glomerulosclerosis to total nephron degeneration and interstitial fibrosis: a histopathological study in rat models and human glomerulopathies. Nephrol, Dialysis, Transpl: Official Publ Eur Dialysis Transpl Asso-Eur Renal Assoc. 1998;13:2781–98.

    Article  CAS  Google Scholar 

  62. Kaverina NV, Eng DG, Largent AD, Daehn I, Chang A, Gross KW, et al. WT1 is necessary for the proliferation and migration of cells of renin lineage following kidney podocyte depletion. Stem Cell Rep. 2017;9:1152–66.

    Article  CAS  Google Scholar 

  63. Essafi A, Webb A, Berry RL, Slight J, Burn SF, Spraggon L, et al. A wt1-controlled chromatin switching mechanism underpins tissue-specific wnt4 activation and repression. Dev Cell. 2011;21:559–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nishad R, Mukhi D, Kethavath S, Raviraj S, Paturi ASV, Motrapu M, et al. Podocyte derived TNF-α mediates monocyte differentiation and contributes to glomerular injury. Faseb J. 2022;36:e22622.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Srinivas Kethavath for the help with gene network analysis and Dr. Raghu Ganugula for assistance with Masson’s trichrome staining. AKP acknowledges DST-FIST and DBT-BUILDER support to the Department of Biochemistry, SLS, UoH.

Funding

This work was supported by funding from the SERB (CRG/2019/005789 to GBR & AKP) and funds from the ICMR (5/9/1447/2022-NUT to GBR and 5/4/7-12/Nephro/2022-NCD-II to AKP). SJ is supported by a Postdoctoral Fellowship from ICMR.

Author information

Authors and Affiliations

Authors

Contributions

GBR and AKP conceived the research, designed experiments, reviewed and edited the manuscript; SJ and RK performed the experiments, analyzed the data and wrote the manuscript; SR and SB performed the experiments and analyzed the data.

Corresponding authors

Correspondence to Anil Kumar Pasupulati or G. Bhanuprakash Reddy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakhotia, S., Kavvuri, R., Raviraj, S. et al. Obesity-related glomerulopathy is associated with elevated WT1 expression in podocytes. Int J Obes (2024). https://doi.org/10.1038/s41366-024-01509-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41366-024-01509-3

Search

Quick links