Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children

Abstract

Background

The tryptophan-kynurenine (KYN) pathway is linked to obesity-related systemic inflammation and metabolic health. The pathway generates multiple metabolites, with little available data on their relationships to early markers of increased metabolic disease risk in children. The aim of this study was to examine the association of multiple KYN pathway metabolites with metabolic risk markers in prepubertal Asian children.

Methods

Fasting plasma concentrations of KYN pathway metabolites were measured using liquid chromatography-tandem mass spectrometry in 8-year-old children (n = 552) from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) prospective mother-offspring cohort study. The child’s weight and height were used to ascertain overweight and obesity using local body mass index (BMI)-for-age percentile charts. Body fat percentage was measured by quantitative magnetic resonance. Abdominal circumference, systolic and diastolic blood pressure, homeostatic model assessment for insulin resistance (HOMA-IR), triglyceride, and HDL-cholesterol were used for the calculation of Metabolic syndrome scores (MetS). Serum triglyceride, BMI, gamma-glutamyl transferase (GGT), and abdominal circumference were used in the calculation of the Fatty liver index (FLI). Associations were examined using multivariable regression analyses.

Results

In overweight or obese children (n = 93; 16.9% of the cohort), all KYN pathway metabolites were significantly increased, relative to normal weight children. KYN, kynurenic acid (KA), xanthurenic acid (XA), hydroxyanthranilic acid (HAA) and quinolinic acid (QA) all showed significant positive associations with body fat percentage (B(95% CI) = 0.32 (0.22,0.42) for QA), HOMA-IR (B(95% CI) = 0.25 (0.16,0.34) for QA), and systolic blood pressure (B(95% CI) = 0.14(0.06,0.22) for QA). All KYN metabolites except 3-hydroxykynurenine (HK) significantly correlated with MetS (B (95% CI) = 0.29 (0.21,0.37) for QA), and FLI (B (95% CI) = 0.30 (0.21,0.39) for QA).

Conclusions

Higher plasma concentrations of KYN pathway metabolites are associated with obesity and with increased risk for metabolic syndrome and fatty liver in prepubertal Asian children.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified schematic of the KYN pathway.
Fig. 2: Fold change of KYN metabolites by BMI categories.
Fig. 3: Association of KYN metabolites with metabolic risk factors.
Fig. 4: Association of KYN metabolites with metabolic syndrome score and fatty liver index.

Similar content being viewed by others

References

  1. World Health Organization. Report of the commission on ending childhood obesity. Geneva, Switzerland: Ending Childhood Obesity Commission; 2016.

  2. Caprio S, Santoro N, Weiss R. Childhood obesity and the associated rise in cardiometabolic complications. Nat Metab. 2020;2:223–32.

    Article  PubMed  Google Scholar 

  3. Foo LL, Vijaya K, Sloan RA, Ling A. Obesity prevention and management: Singapore’s experience. Obes Rev. 2013;14 Suppl 2:106–13.

    Article  PubMed  Google Scholar 

  4. Nadeau KJ, Maahs DM, Daniels SR, Eckel RH. Childhood obesity and cardiovascular disease: links and prevention strategies. Nat Rev Cardiol. 2011;8:513–25.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ho TF. Cardiovascular risks associated with obesity in children and adolescents. Ann Acad Med Singap. 2009;38:48–9.

    PubMed  Google Scholar 

  6. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, et al. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2009;119:628–47.

    Article  PubMed  Google Scholar 

  7. Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophanas metabolites in exercise, inflammation, and mental health. Science. 2017;357(6349):eaaf9794

    Article  PubMed  CAS  Google Scholar 

  8. Dadvar S, Ferreira DMS, Cervenka I, Ruas JL. The weight of nutrients: kynurenine metabolites in obesity and exercise. J Intern Med. 2018;284:519–33.

    Article  CAS  PubMed  Google Scholar 

  9. Badawy AA. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res. 2017;10:1178646917691938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Modoux M, Rolhion N, Mani S, Sokol H. Tryptophan metabolism as a pharmacological target. Trends Pharmacol Sci. 2021;42:60–73.

    Article  CAS  PubMed  Google Scholar 

  11. Mangge H, Summers KL, Meinitzer A, Zelzer S, Almer G, Prassl R, et al. Obesity-related dysregulation of the tryptophan-kynurenine metabolism: role of age and parameters of the metabolic syndrome. Obesity. 2014;22:195–201.

    Article  CAS  PubMed  Google Scholar 

  12. Favennec M, Hennart B, Caiazzo R, Leloire A, Yengo L, Verbanck M, et al. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity. 2015;23:2066–74.

    Article  CAS  PubMed  Google Scholar 

  13. Pertovaara M, Raitala A, Juonala M, Lehtimäki T, Huhtala H, Oja SS, et al. Indoleamine 2,3-dioxygenase enzyme activity correlates with risk factors for atherosclerosis: the Cardiovascular Risk in Young Finns Study. Clin Exp Immunol. 2007;148:106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu E, Papandreou C, Ruiz-Canela M, Guasch-Ferre M, Clish CB, Dennis C, et al. Association of tryptophan metabolites with incident type 2 diabetes in the PREDIMED trial: a case-cohort study. Clin Chem. 2018;64:1211–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rebnord EW, Strand E, Midttun Ø, Svingen GFT, Christensen MHE, Ueland PM, et al. The kynurenine:tryptophan ratio as a predictor of incident type 2 diabetes mellitus in individuals with coronary artery disease. Diabetologia. 2017;60:1712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Song P, Ramprasath T, Wang H, Zou MH. Abnormal kynurenine pathway of tryptophan catabolism in cardiovascular diseases. Cell Mol Life Sci. 2017;74:2899–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Polyzos KA, Ketelhuth DF. The role of the kynurenine pathway of tryptophan metabolism in cardiovascular disease. An emerging field. Hamostaseologie. 2015;35:128–36.

    Article  CAS  PubMed  Google Scholar 

  18. Barat P, Meiffred MC, Brossaud J, Fuchs D, Corcuff JB, Thibault H, et al. Inflammatory, endocrine and metabolic correlates of fatigue in obese children. Psychoneuroendocrinology. 2016;74:158–63.

    Article  CAS  PubMed  Google Scholar 

  19. Groven N, Reitan SK, Fors EA, Guzey IC. Kynurenine metabolites and ratios differ between Chronic Fatigue Syndrome, Fibromyalgia, and healthy controls. Psychoneuroendocrinology. 2021;131:105287.

    Article  CAS  PubMed  Google Scholar 

  20. Oxenkrug GF. Increased plasma levels of xanthurenic and kynurenic acids in type 2 diabetes. Mol Neurobiol. 2015;52:805–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Matsuoka K, Kato K, Takao T, Ogawa M, Ishii Y, Shimizu F, et al. Concentrations of various tryptophan metabolites are higher in patients with diabetes mellitus than in healthy aged male adults. Diabetol Int. 2017;8:69–75.

    Article  PubMed  Google Scholar 

  22. Liu JJ, Movassat J, Portha B. Emerging role for kynurenines in metabolic pathologies. Curr Opin Clin Nutr Metab Care. 2019;22:82–90.

    Article  CAS  PubMed  Google Scholar 

  23. Meyramov G, Korchin V, Kocheryzkina N. Diabetogenic activity of xanturenic acid determined by its chelating properties? Transplant Proc. 1998;30:2682–4.

    Article  CAS  PubMed  Google Scholar 

  24. Suzuki Y, Kido J, Matsumoto S, Shimizu K, Nakamura K. Associations among amino acid, lipid, and glucose metabolic profiles in childhood obesity. BMC Pediatr. 2019;19:273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Butte NF, Liu Y, Zakeri IF, Mohney RP, Mehta N, Voruganti VS, et al. Global metabolomic profiling targeting childhood obesity in the Hispanic population. Am J Clin Nutr. 2015;102:256–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Midttun Ø, Hustad S, Ueland PM. Quantitative profiling of biomarkers related to B-vitamin status, tryptophan metabolism and inflammation in human plasma by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:1371–9.

    Article  CAS  PubMed  Google Scholar 

  27. Soh SE, Tint MT, Gluckman PD, Godfrey KM, Rifkin-Graboi A, Chan YH, et al. Cohort profile: Growing Up in Singapore Towards healthy Outcomes (GUSTO) birth cohort study. Int J Epidemiol. 2014;43:1401–9.

    Article  PubMed  Google Scholar 

  28. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chen LW, Tint MT, Fortier MV, Aris IM, Shek LP, Tan KH, et al. Body composition measurement in young children using quantitative magnetic resonance: a comparison with air displacement plethysmography. Pediatr Obes. 2018;13:365–73.

    Article  PubMed  Google Scholar 

  30. Ding C, Chan Z, Chooi YC, Choo J, Sadananthan SA, Michael N. Association between Serum Vitamin D Metabolites and Metabolic Function in Healthy Asian Adults. Nutrients. 2020;12(12):3706

    Article  CAS  PubMed Central  Google Scholar 

  31. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  32. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Article  CAS  PubMed  Google Scholar 

  33. Ahrens W, Moreno LA, Mårild S, Molnár D, Siani A, De Henauw S, et al. Metabolic syndrome in young children: definitions and results of the IDEFICS study. Int J Obes. 2014;38:S4–14.

    Article  Google Scholar 

  34. Clemente MG, Mandato C, Poeta M, Vajro P. Pediatric non-alcoholic fatty liver disease: recent solutions, unresolved issues, and future research directions. World J Gastroenterol. 2016;22:8078–93.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sundaram SS, Zeitler P, Nadeau K. The metabolic syndrome and nonalcoholic fatty liver disease in children. Curr Opin Pediatr. 2009;21:529–35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bedogni G, Bellentani S, Miglioli L, Masutti F, Passalacqua M, Castiglione A, et al. The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006;6:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Tint MT, Michael N, Sadananthan SA, Huang JY, Khoo CM, Godfrey KM, et al. Brown adipose tissue, adiposity and metabolic profile in preschool children. J Clin Endocrinol Metab. 2021;106(10):2901–14.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Theofylaktopoulou D, Midttun Ø, Ulvik A, Ueland PM, Tell GS, Vollset SE, et al. A community-based study on determinants of circulating markers of cellular immune activation and kynurenines: the Hordaland Health Study. Clin Exp Immunol. 2013;173:121–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deac OM, Mills JL, Shane B, Midttun Ø, Ueland PM, Brosnan JT, et al. Tryptophan catabolism and vitamin B-6 status are affected by gender and lifestyle factors in healthy young adults. J Nutr. 2015;145:701–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Badawy AA, Dougherty DM. Assessment of the human kynurenine pathway: comparisons and clinical implications of ethnic and gender differences in plasma tryptophan, kynurenine metabolites, and enzyme expressions at baseline and after acute tryptophan loading and depletion. Int J Tryptophan Res. 2016;9:31–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Spinelli A, Buoncristiano M, Nardone P, Starc G, Hejgaard T, J£l¡usson PB, et al. Thinness, overweight, and obesity in 6- to 9-year-old children from 36 countries: The World Health Organization European Childhood Obesity Surveillance Initiative-COSI. Obes Rev. 2021;22(6):e13214

    PubMed  Google Scholar 

  42. Peplies J, Börnhorst C, Günther K, Fraterman A, Russo P, Veidebaum T, et al. Longitudinal associations of lifestyle factors and weight status with insulin resistance (HOMA-IR) in preadolescent children: the large prospective cohort study IDEFICS. Int J Behav Nutr Phys Act. 2016;13:97.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yin J, Li M, Xu L, Wang Y, Cheng H, Zhao X, et al. Insulin resistance determined by Homeostasis Model Assessment (HOMA) and associations with metabolic syndrome among Chinese children and teenagers. Diabetol Metab Syndr. 2013;5:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. DeBoer MD, Gurka MJ. Clinical utility of metabolic syndrome severity scores: considerations for practitioners. Diabetes Metab Syndr Obes. 2017;10:65–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol. 2008;7:17.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kamel M, Smith BT, Wahi G, Carsley S, Birken CS, Anderson LN. Continuous cardiometabolic risk score definitions in early childhood: a scoping review. Obes Rev. 2018;19:1688–99.

    Article  CAS  PubMed  Google Scholar 

  47. Eisenmann JC, Laurson KR, DuBose KD, Smith BK, Donnelly JE. Construct validity of a continuous metabolic syndrome score in children. Diabetol Metab Syndr. 2010;2:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Khoshhali M, Heshmat R, Esmaeil Motlagh M, Ziaodini H, Hadian M, Aminaei T, et al. Comparing the validity of continuous metabolic syndrome risk scores for predicting pediatric metabolic syndrome: the CASPIAN-V study. J Pediatr Endocrinol Metab. 2019;32:383–9.

    Article  CAS  PubMed  Google Scholar 

  49. Heshmat R, Heidari M, Ejtahed HS, Motlagh ME, Mahdavi-Gorab A, Ziaodini H, et al. Validity of a continuous metabolic syndrome score as an index for modeling metabolic syndrome in children and adolescents: the CASPIAN-V study. Diabetol Metab Syndr. 2017;9:89.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cohen DD, Gómez-Arbeláez D, Camacho PA, Pinzon S, Hormiga C, Trejos-Suarez J, et al. Low muscle strength is associated with metabolic risk factors in Colombian children: the ACFIES study. PLoS ONE. 2014;9:e93150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, Valle M, et al. A continuous metabolic syndrome score is associated with specific biomarkers of inflammation and CVD risk in prepubertal children. Ann Nutr Metab. 2015;66:72–9.

    Article  CAS  PubMed  Google Scholar 

  52. DeBoer MD, Gurka MJ, Woo JG, Morrison JA. Severity of the metabolic syndrome as a predictor of type 2 diabetes between childhood and adulthood: the Princeton Lipid Research Cohort Study. Diabetologia. 2015;58:2745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Magnussen CG, Cheriyan S, Sabin MA, Juonala M, Koskinen J, Thomson R, et al. Continuous and dichotomous metabolic syndrome definitions in youth predict adult type 2 diabetes and carotid artery intima media thickness: the Cardiovascular Risk in Young Finns Study. J Pediatr. 2016;171:97–103.e1-3.

  54. DeBoer MD, Gurka MJ, Woo JG, Morrison JA. Severity of metabolic syndrome as a predictor of cardiovascular disease between childhood and adulthood: the Princeton Lipid Research Cohort Study. J Am Coll Cardiol. 2015;66:755–7.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Okabe K, Yaku K, Tobe K, Nakagawa T. Implications of altered NAD metabolism in metabolic disorders. J Biomed Sci. 2019;26:34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Migliavacca E, Tay SKH, Patel HP, Sonntag T, Civiletto G, McFarlane C, et al. Mitochondrial oxidative capacity and NAD(+) biosynthesis are reduced in human sarcopenia across ethnicities. Nat Commun. 2019;10:5808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP. Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J. 1996;320:595–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Werner ER, Bitterlich G, Fuchs D, Hausen A, Reibnegger G, Szabo G, et al. Human macrophages degrade tryptophan upon induction by interferon-gamma. Life Sci. 1987;41:273–80.

    Article  CAS  PubMed  Google Scholar 

  59. Guillemin GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356–65.

    Article  CAS  PubMed  Google Scholar 

  60. Ulvik A, McCann A, Midttun Ø, Meyer K, Godfrey KM, Ueland PM. Quantifying precision loss in targeted metabolomics based on mass spectrometry and nonmatching internal standards. Anal Chem. 2021;93:7616–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-Tryptophan: basic metabolic functions, behavioral research and therapeutic indications. Int J Tryptophan Res. 2009;2:45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Valente-Silva P, Cervenka I, Ferreira DMS, Correia JC, Edman S, Horwath O. et al. Effects of tryptophan supplementation and exercise on the fate of kynurenine metabolites in mice and humans. Metabolites. 2021;11(8):508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study group includes: Airu Chia, Allan Sheppard, Amutha Chinnadurai, Anna Magdalena Fogel, Anne Eng Neo Goh, Anne Hin Yee Chu, Anne Rifkin-Graboi, Anqi Qiu, Arijit Biswas, Bee Wah Lee, Birit Froukje Philipp Broekman, Bobby Kyungbeom Cheon, Boon Long Quah, Candida Vaz, Chai Kiat Chng, Cheryl Shufen Ngo, Choon Looi Bong, Christiani Jeyakumar Henry, Ciaran Gerard Forde, Claudia Chi, Daniel Yam Thiam Goh, Dawn Xin Ping Koh, Desiree Y. Phua, Doris Ngiuk Lan Loh, E Shyong Tai, Elaine Kwang Hsia Tham, Elaine Phaik Ling Quah, Elizabeth Huiwen Tham, Evelyn Chung Ning Law, Evelyn Xiu Ling Loo, FKPY, Faidon Magkos, Falk Müller-Riemenschneider, George Seow Heong Yeo, Hannah Ee Juen Yong, Helen Yu Chen, Heng Hao Tan, Hong Pan, Hugo P S van Bever, Hui Min Tan, Iliana Magiati, Inez Bik Yun Wong, Ives Yubin Lim, Ivy Yee-Man Lau, Izzuddin Bin Mohd Aris, Jeannie Tay, Jeevesh Kapur, Jenny L. Richmond, Jerry Kok Yen Chan, Jia Xu, Joanna Dawn Holbrook, Joanne Su-Yin Yoong, Joao Nuno Andrade Requicha Ferreira, JGE, Jonathan Tze Liang Choo, Jonathan Y. Bernard, Jonathan Yinhao Huang, Joshua J. Gooley, Jun Shi Lai, KMLT, KMG, Kenneth Yung Chiang Kwek, Keri McCrickerd, KHT, NK, Krishnamoorthy Naiduvaje, Kuan Jin Lee, Leher Singh, Li Chen, Lieng Hsi Ling, Lin Lin Su, Ling-Wei Chen, Lourdes Mary Daniel, Lynette Pei-Chi Shek, Marielle V. Fortier, Mark Hanson, MFFC, Mary Rauff, Mei Chien Chua, Melvin Khee-Shing Leow, Michael J. Meaney, Michelle Zhi Ling Kee, Min Gong, MTT, Navin Michael, Neerja Karnani, Ngee Lek, Oon Hoe Teoh, P. C. Wong, Paulin Tay Straughan, PDG, Pratibha Keshav Agarwal, Priti Mishra, Queenie Ling Jun Li, Rob Martinus van Dam, Salome A. Rebello, Sambasivam Sendhil Velan, Seang Mei Saw, See Ling Loy, Seng Bin Ang, Shang Chee Chong, Sharon Ng, Shiao-Yng Chan, Shirong Cai, Shu-E Soh, Sok Bee Lim, Stella Tsotsi, Stephen Chin-Ying Hsu, Sue-Anne Ee Shiow Toh, Suresh Anand Sadananthan, Swee Chye Quek, Varsha Gupta, Victor Samuel Rajadurai, Walter Stunkel, Wayne Cutfield, Wee Meng Han, Wei Wei Pang, Wen Lun Yuan, Yanan Zhu, YSC, Yin Bun Cheung, Yiong Huak Chan, YSL.

Author contributions

KMT was responsible for designing the study, analyzing data, interpreting results, and writing the manuscript. MTT contributed to designing the study, extracting and analyzing data, interpreting results, and writing the manuscript. NK contributed to analyzing data. FY, KMG, YSL, KHT, PDG, YSC, and MFFC contributed to data collection. KMG, YSL, MFFC, and JGE provided feedback on the manuscript. DCS was responsible for designing the study, interpreting results, and writing the manuscript.

Funding

The study is supported by the National Research Foundation (NRF) under the Open Fund-Large Collaborative Grant (OF-LCG; MOH-000504) administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC) and the Agency for Science, Technology and Research (A*STAR). In RIE2025, GUSTO is supported by funding from the NRF’s Human Health and Potential (HHP) Domain, under the Human Potential Programme

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cameron-Smith.

Ethics declarations

Competing interests

YSC, PDG, and KMG are part of an academic consortium that has received research funding from companies selling nutritional products. KMG and DCS have received reimbursement for speaking at conferences sponsored by companies selling nutritional products. KMG is supported by the UK Medical Research Council (MC_UU_12011/4), the National Institute for Health Research (NIHR Senior Investigator (NF-SI-0515-10042) and NIHR Southampton Biomedical Research Centre (IS-BRC-1215-20004)), the European Union (Erasmus+ Programme ImpENSA 598488-EPP-1-2018-1-DE-EPPKA2-CBHE-JP) and the British Heart Foundation (RG/15/17/3174, SP/F/21/150013). All other authors declare no financial relationships with any organizations that might have an interest in the submitted work, and no other relationships or activities that could appear to have influenced the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, K.ML., Tint, MT., Kothandaraman, N. et al. Association of plasma kynurenine pathway metabolite concentrations with metabolic health risk in prepubertal Asian children. Int J Obes 46, 1128–1137 (2022). https://doi.org/10.1038/s41366-022-01085-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-022-01085-4

This article is cited by

Search

Quick links