Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain

Abstract

Background

Maternal obesity prior to or during pregnancy influences fetal growth, predisposing the offspring to increased risk for obesity across the life course. Placental epigenetic mechanisms may underlie these associations. We conducted an epigenome-wide association study to identify placental DNA methylation changes associated with maternal prepregnancy body mass index (BMI) and rate of gestational weight gain at first (GWG1), second (GWG2), and third trimester (GWG3).

Method

Participants of the NICHD Fetal Growth Studies with genome-wide placental DNA methylation (n = 301) and gene expression (n = 75) data were included. Multivariable-adjusted regression models were used to test the associations of 1 kg/m2 increase in prepregnancy BMI or 1 kg/week increase in GWG with DNA methylation levels. Genes harboring top differentially methylated CpGs (FDR P < 0.05) were evaluated for placental gene expression. We assessed whether DNA methylation sites known to be associated with BMI in child or adult tissues, were also associated with maternal prepregnancy BMI in placenta.

Results

Prepregnancy BMI was associated with DNA methylation at cg14568196[EGFL7], cg15339142[VETZ], and cg02301019[AC092377.1] (FDR P < 0.05, P ranging from 1.4 × 10−10 to 1.7 × 10−9). GWG1 or GWG2 was associated with DNA methylation at cg17918270[MYT1L], cg20735365[DLX5], and cg17451688[SLC35F3] (FDR P < 0.05, P ranging from 6.4 × 10−10 to 1.2 × 10−8). Both prepregnancy BMI and DNA methylation at cg1456819 [EGFL7] were negatively correlated with EGFL7 expression in placenta (P < 0.05). Several CpGs previously implicated in obesity traits in children and adults were associated with prepregnancy BMI in placenta. Functional annotations revealed that EGFL7 is highly expressed in placenta and the differentially methylated CpG sites near EGFL7 and VEZT were cis-meQTL targets in blood.

Conclusions

We identified placental DNA methylation changes at novel loci associated with prepregnancy BMI and GWG. The overlap between CpGs associated with obesity traits in placenta and other tissues in children and adults suggests that epigenetic mechanisms in placenta may give insights to early origins of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Correlation between DNA methylation at top significant CpG sites and expression of the corresponding gene.

Similar content being viewed by others

Data availability

The DNA methylation, genotype, and gene expression data are available through dbGaP with accession number phs001717.v1.p1.

References

  1. Chen C, Xu X, Yan Y. Estimated global overweight and obesity burden in pregnant women based on panel data model. PLoS ONE. 2018;13:e0202183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Deputy NP, Sharma AJ, Kim SY. Gestational weight gain—United States, 2012 and 2013. MMWR-Morbid Mortal Wkly Rep. 2015;64:1215–20.

    Article  Google Scholar 

  3. Maffeis C, Morandi A. Effect of maternal obesity on foetal growth and metabolic health of the offspring. Obes Facts. 2017;10:112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mamun AA, Mannan M, Doi SA. Gestational weight gain in relation to offspring obesity over the life course: a systematic review and bias-adjusted meta-analysis. Obes Rev. 2014;15:338–47.

    Article  CAS  PubMed  Google Scholar 

  5. Godfrey KM, Reynolds RM, Prescott SL, Nyirenda M, Jaddoe VW, Eriksson JG, et al. Influence of maternal obesity on the long-term health of offspring. Lancet Diabetes Endocrinol. 2017;5:53–64.

    Article  PubMed  Google Scholar 

  6. Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M, et al. Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the avon longitudinal study of parents and children. Int J Epidemiol. 2015;44:1288–304.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Thakali KM, Faske JB, Ishwar A, Alfaro MP, Cleves MA, Badger TM, et al. Maternal obesity and gestational weight gain are modestly associated with umbilical cord DNA methylation. Placenta. 2017;57:194–203.

    Article  CAS  PubMed  Google Scholar 

  8. Desai M, Jellyman JK, Ross MG. Epigenomics, gestational programming and risk of metabolic syndrome. Int J Obes (Lond). 2015;39:633–41.

    Article  CAS  Google Scholar 

  9. Thornburg KL, O’Tierney PF, Louey S. The placenta is a programming agent for cardiovascular disease. Placenta. 2010;31:S54–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Desoye G. The human placenta in diabetes and obesity: friend or foe? The 2017 Norbert Freinkel Award Lecture. Diabetes Care. 2018;41:1362–9.

    Article  PubMed  CAS  Google Scholar 

  11. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS. Members of Epi S. epigenetics and human obesity. Int J Obes (Lond). 2015;39:85–97.

    Article  CAS  Google Scholar 

  12. Mitsuya K, Parker AN, Liu L, Ruan J, Vissers MCM, Myatt L. Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PLoS ONE. 2017;12:e0186115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kawai T, Yamada T, Abe K, Okamura K, Kamura H, Akaishi R, et al. Increased epigenetic alterations at the promoters of transcriptional regulators following inadequate maternal gestational weight gain. Sci Rep. 2015;5:14224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Michels KB, Harris HR, Barault L. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS ONE. 2011;6:e25254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grewal J, Grantz KL, Zhang C, Sciscione A, Wing DA, Grobman WA, et al. Cohort profile: NICHD fetal growth studies-singletons and twins. Int J Epidemiol. 2018;47:25–25l.

    Article  PubMed  Google Scholar 

  16. Hinkle SN, Johns AM, Albert PS, Kim S, Grantz KL. Longitudinal changes in gestational weight gain and the association with intrauterine fetal growth. Eur J Obstet Gynecol Reprod Biol. 2015;190:41–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Delahaye F, Do C, Kong Y, Ashkar R, Salas M, Tycko B, et al. Genetic variants influence on the placenta regulatory landscape. Plos Genet. 2018;14:e1007785.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2012;29:189–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Tekola-Ayele F, Workalemahu T, Gorfu G, Shrestha D, Tycko B, Wapner R, et al. Sex differences in the associations of placental epigenetic aging with fetal growth. Aging. 2019;11:5412–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van Iterson M, van Zwet EW, Heijmans BT. Controlling bias and inflation in epigenome-and transcriptome-wide association studies using the empirical null distribution. Genome Biol. 2017;18:19.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106. https://doi.org/10.1186/gb-2010-11-10-r106.

  24. Sharp GC, Salas LA, Monnereau C, Allard C, Yousefi P, Everson TM, et al. Maternal BMI at the start of pregnancy and offspring epigenome-wide DNA methylation: findings from the pregnancy and childhood epigenetics (PACE) consortium. Hum Mol Genet. 2017;26:4067–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fradin D, Boelle PY, Belot MP, Lachaux F, Tost J, Besse C, et al. Genome-wide methylation analysis identifies specific epigenetic marks in severely obese children. Sci Rep. 2017;7:46311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang RC, Garratt ES, Pan H, Wu Y, Davis EA, Barton SJ, et al. Genome-wide methylation analysis identifies differentially methylated CpG loci associated with severe obesity in childhood. Epigenetics. 2015;10:995–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dhana K, Braun KVE, Nano J, Voortman T, Demerath EW, Guan W, et al. An epigenome-wide association study of obesity-related traits. Am J Epidemiol. 2018;187:1662–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S, et al. Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature. 2017;541:81–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Pan Y, Zhu H, Hao G, Huang Y, Barnes V, et al. An epigenome-wide study of obesity in African American youth and young adults: novel findings, replication in neutrophils, and relationship with gene expression. Clin Epigenetics. 2018;10:3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Geurts YM, Dugue PA, Joo JE, Makalic E, Jung CH, Guan W, et al. Novel associations between blood DNA methylation and body mass index in middle-aged and older adults. Int J Obes (Lond). 2018;42:887–96.

    Article  CAS  Google Scholar 

  31. Meeks KAC, Henneman P, Venema A, Burr T, Galbete C, Danquah I, et al. An epigenome-wide association study in whole blood of measures of adiposity among Ghanaians: the RODAM study. Clin Epigenetics. 2017;9:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Sayols-Baixeras S, Subirana I, Fernandez-Sanles A, Senti M, Lluis-Ganella C, Marrugat J, et al. DNA methylation and obesity traits: an epigenome-wide association study. The REGICOR study. Epigenetics. 2017;12:909–16.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mansego ML, Milagro FI, Zulet MA, Moreno-Aliaga MJ, Martinez JA. Differential DNA methylation in relation to age and health risks of obesity. Int J Mol Sci. 2015;16:16816–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the Sister Study cohort. Int J Obes (Lond). 2017;41:194–9.

    Article  CAS  Google Scholar 

  35. Al Muftah WA, Al-Shafai M, Zaghlool SB, Visconti A, Tsai PC, Kumar P, et al. Epigenetic associations of type 2 diabetes and BMI in an Arab population. Clin Epigenetics. 2016;8:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Almen MS, Nilsson EK, Jacobsson JA, Kalnina I, Klovins J, Fredriksson R, et al. Genome-wide analysis reveals DNA methylation markers that vary with both age and obesity. Gene. 2014;548:61–7.

    Article  CAS  PubMed  Google Scholar 

  37. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L, et al. Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring). 2015;23:1493–501.

    Article  CAS  Google Scholar 

  38. Demerath EW, Guan W, Grove ML, Aslibekyan S, Mendelson M, Zhou YH, et al. Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci. Hum Mol Genet. 2015;24:4464–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet (London, England). 2014;383:1990–8.

    Article  CAS  Google Scholar 

  40. Agha G, Houseman EA, Kelsey KT, Eaton CB, Buka SL, Loucks EB. Adiposity is associated with DNA methylation profile in adipose tissue. Int J Epidemiol. 2015;44:1277–87.

    Article  PubMed  Google Scholar 

  41. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, et al. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet. 2015;24:3792–813.

    PubMed  Google Scholar 

  42. Bridges D, Saltiel AR. Phosphoinositides: key modulators of energy metabolism. Biochim Biophys Acta. 2015;1851:857–66.

    Article  CAS  PubMed  Google Scholar 

  43. Lacko LA, Massimiani M, Sones JL, Hurtado R, Salvi S, Ferrazzani S, et al. Novel expression of EGFL7 in placental trophoblast and endothelial cells and its implication in preeclampsia. Mech Dev. 2014;133:163–76.

    Article  CAS  PubMed  Google Scholar 

  44. Lacko LA, Hurtado R, Hinds S, Poulos MG, Butler JM, Stuhlmann H. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function. Development. 2017;144:2469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Massimiani M, Vecchione L, Piccirilli D, Spitalieri P, Amati F, Salvi S, et al. Epidermal growth factor-like domain 7 promotes migration and invasion of human trophoblast cells through activation of MAPK, PI3K and NOTCH signaling pathways. Mol Hum Reprod. 2015;21:435–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Whitehead CL, Kaitu’u-Lino TJ, Binder NK, Beard S, De Alwis N, Brownfoot F, et al. EGFL7 gene expression is regulated by hypoxia in trophoblast and altered in the plasma of patients with early preeclampsia. Pregnancy Hypertens. 2018;14:115–20.

    Article  PubMed  Google Scholar 

  47. Hernandez DG, Singleton AB. Using DNA methylation to understand biological consequences of genetic variability. Neurodegener Dis. 2012;9:53–9.

    Article  CAS  PubMed  Google Scholar 

  48. Voisin S, Almen MS, Zheleznyakova GY, Lundberg L, Zarei S, Castillo S, et al. Many obesity-associated SNPs strongly associate with DNA methylation changes at proximal promoters and enhancers. Genome Med. 2015;7:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cortes VA, Curtis DE, Sukumaran S, Shao X, Parameswara V, Rashid S, et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy. Cell Metab. 2009;9:165–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Heinonen S, Buzkova J, Muniandy M, Kaksonen R, Ollikainen M, Ismail K, et al. Impaired mitochondrial biogenesis in adipose tissue in acquired obesity. Diabetes. 2015;64:3135–45.

    Article  CAS  PubMed  Google Scholar 

  51. Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H, et al. Nuclear orphan receptor TAK1/TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin resistance. Diabetes. 2011;60:177–88.

    Article  CAS  PubMed  Google Scholar 

  52. Hyenne V, Harf JC, Latz M, Maro B, Wolfrum U, Simmler MC. Vezatin, a ubiquitous protein of adherens cell-cell junctions, is exclusively expressed in germ cells in mouse testis. Reproduction (Cambridge, England). 2007;133:563–74.

    Article  CAS  Google Scholar 

  53. Voerman E, Santos S, Patro Golab B, Amiano P, Ballester F, Barros H, et al. Maternal body mass index, gestational weight gain, and the risk of overweight and obesity across childhood: an individual participant data meta-analysis. PLoS Med. 2019;16:e1002744.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rohde K, Keller M, la Cour Poulsen L, Bluher M, Kovacs P, Bottcher Y. Genetics and epigenetics in obesity. Metab: Clin Exp. 2019;92:37–50.

    Article  CAS  Google Scholar 

  55. Pfeiffer S, Kruger J, Maierhofer A, Bottcher Y, Kloting N, El Hajj N, et al. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction. Sci Rep. 2016;6:27969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pan H, Lin X, Wu Y, Chen L, Teh AL, Soh SE, et al. HIF3A association with adiposity: the story begins before birth. Epigenomics. 2015;7:937–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pereira RD, De Long NE, Wang RC, Yazdi FT, Holloway AC, Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling. Biomed Res Int. 2015;2015:814543.

    PubMed  PubMed Central  Google Scholar 

  58. Grindler NM, Vanderlinden L, Karthikraj R, Kannan K, Teal S, Polotsky AJ, et al. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Sci Rep. 2018;8:6086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Barfield RT, Almli LM, Kilaru V, Smith AK, Mercer KB, Duncan R, et al. Accounting for population stratification in DNA methylation studies. Genet Epidemiol. 2014;38:231–41.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the research teams at all participating clinical centers for the NICHD Fetal Growth Studies, including Christina Care Health Systems, Columbia University, Fountain Valley Hospital, California, Long Beach Memorial Medical Center, New York Hospital, Queens, Northwestern University, University of Alabama at Birmingham, University of California, Irvine, Medical University of South Carolina, Saint Peters University Hospital, Tufts University, and Women and Infants Hospital of Rhode Island. The authors also acknowledge C-TASC and The EMMES Corporations in providing data and imaging support. Genotyping was performed in the Department of Laboratory Medicine and Pathology, University of Minnesota. This work utilized the computational resources of the NIH HPC Biowulf cluster (http://hpc.nih.gov).

Funding

This research was supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (contracts HHSN275200800013C; HHSN275200800002I; HHSN27500006; HHSN275200800003IC; HHSN275200800014C; HHSN275200800012C; HHSN275200800028C; HHSN275201000009C; HHSN27500008). In addition support was obtained from the National Institute on Minority Health and Health Disparities, and the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Contributions

FT-A conceived and designed this study; DS performed statistical analyses and wrote the draft paper. All authors contributed to interpretation of the results, provided critical intellectual content, and approved the final paper.

Corresponding author

Correspondence to Fasil Tekola-Ayele.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, D., Ouidir, M., Workalemahu, T. et al. Placental DNA methylation changes associated with maternal prepregnancy BMI and gestational weight gain. Int J Obes 44, 1406–1416 (2020). https://doi.org/10.1038/s41366-020-0546-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0546-2

This article is cited by

Search

Quick links