Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Reduced SIRT1 and SIRT2 expression promotes adipogenesis of human visceral adipose stem cells and associates with accumulation of visceral fat in human obesity

Abstract

Background/Objectives

The histone deacetylases SIRT1 and SIRT2 have been shown to be involved in the differentiation of rodent adipocyte precursors. In light of the differences in gene expression and metabolic function of visceral (V) and subcutaneous (S) adipose tissue (AT) and their resident cells, the aim of this study was to investigate the role of SIRT1 and SIRT2 in the differentiation of adipose stem cells (ASCs) isolated from SAT and VAT biopsies of nondiabetic obese and nonobese individuals.

Methods

Human ASCs were isolated from paired SAT and VAT biopsies obtained from 83 nonobese and 92 obese subjects and were differentiated in vitro. Adipogenesis was evaluated by analyzing the lipid deposition using an image processing software, and gene expression by RT-qPCR. SIRT1 and SIRT2 protein expression was modified by using recombinant adenoviral vectors.

Results

Visceral but not subcutaneous ASCs from obese subjects showed an intrinsic increase in both adipogenesis and lipid accumulation when compared with ASCs from nonobese subjects, and this was associated with reduced SIRT1 and SIRT2 mRNA and protein levels. Moreover, adipose tissue mRNA levels of SIRT1 and SIRT2 showed an inverse correlation with BMI in the visceral but not subcutaneous depot. Overexpression of SIRT1 or SIRT2 in visceral ASCs from obese subjects resulted in inhibition of adipocyte differentiation, whereas knockdown of SIRT1 or SIRT2 in visceral ASCs from nonobese subjects enhanced this process. Changes in SIRT1 or SIRT2 expression and adipocyte differentiation were paralleled by corresponding changes in PPARG, CEBPA, and other genes marking terminal adipocyte differentiation.

Conclusions

SIRT1 and SIRT2 modulate the differentiation of human ASC. Reduced expression of SIRT1 and SIRT2 may enhance the differentiation capacity of visceral ASC in human obesity, fostering visceral adipose tissue expansion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Lindroos J, Husa J, Mitterer G, Haschemi A, Rauscher S, Haas R, et al. Human but not mouse adipogenesis is critically dependent on LMO3. Cell Metab. 2013;18:62–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tran TT, Kahn CR. Transplantation of adipose tissue and stem cells: role in metabolism and disease. Nat Rev Endocrinol. 2010;6:195–213.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laviola L, Perrini S, Cignarelli A, Natalicchio A, Leonardini A, De Stefano F, et al. Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes. 2006;55:952–61.

    Article  CAS  PubMed  Google Scholar 

  4. Perrini S, Laviola L, Cignarelli A, Melchiorre M, De Stefano F, Caccioppoli C, et al. Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia. 2008;51:155–64.

    Article  CAS  PubMed  Google Scholar 

  5. Perrini S, Ficarella R, Picardi E, Cignarelli A, Barbaro M, Nigro P, et al. Differences in gene expression and cytokine release profiles highlight the heterogeneity of distinct subsets of adipose tissue-derived stem cells in the subcutaneous and visceral adipose tissue in humans. PLoS ONE. 2013;8:e57892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macotela Y, Emanuelli B, Mori MA, Gesta S, Schulz TJ, Tseng Y-H, et al. Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes. 2012;61:1691–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tchkonia T, Thomou T, Zhu Y, Karagiannides I, Pothoulakis C, Jensen MD, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab. 2013;17:644–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, et al. Dynamics of fat cell turnover in humans. Nature. 2008;453:783–7.

    Article  CAS  PubMed  Google Scholar 

  9. Arner E, Westermark PO, Spalding KL, Britton T, Rydén M, Frisén J, et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes. 2010;59:105–9.

    Article  CAS  PubMed  Google Scholar 

  10. Gomes P, Fleming Outeiro T, Cavadas C. Emerging role of sirtuin 2 in the regulation of mammalian metabolism. Trends Pharmacol Sci. 2015;36:756–68.

    Article  CAS  PubMed  Google Scholar 

  11. Chang H-C, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25:138–45.

    Article  CAS  PubMed  Google Scholar 

  12. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado de Oliveira R, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature. 2004;429:771–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6:105–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mayoral R, Osborn O, McNelis J, Johnson AM, Oh DY, Izquierdo CL, et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity. Mol Metab. 2015;4:378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell. 2007;6:759–67.

    Article  CAS  PubMed  Google Scholar 

  16. Kurylowicz A, Owczarz M, Polosak J, Jonas MI, Lisik W, Jonas M, et al. SIRT1 and SIRT7 expression in adipose tissues of obese and normal-weight individuals is regulated by microRNAs but not by methylation status. Int J Obes. 2016;40:1635–42.

    Article  CAS  Google Scholar 

  17. Martínez-Jiménez V, Cortez-Espinosa N, Rodríguez-Varela E, Vega-Cárdenas M, Briones-Espinoza M, Ruíz-Rodríguez VM, et al. Altered levels of sirtuin genes (SIRT1, SIRT2, SIRT3 and SIRT6) and their target genes in adipose tissue from individual with obesity. Diabetes Metab Syndr. 2019;13:582–9.

    Article  PubMed  Google Scholar 

  18. Cignarelli A, Melchiorre M, Peschechera A, Conserva A, Renna LA, Miccoli S, et al. Role of UBC9 in the regulation of the adipogenic program in 3T3-L1 adipocytes. Endocrinology. 2010;151:5255–66.

    Article  CAS  PubMed  Google Scholar 

  19. Cignarelli A, Perrini S, Nigro P, Ficarella R, Barbaro M, Peschechera A, et al. Long-acting insulin analog detemir displays reduced effects on adipocyte differentiation of human subcutaneous and visceral adipose stem cells. Nutr Metab Cardiovasc Dis. 2016;26:333–44.

    Article  CAS  PubMed  Google Scholar 

  20. Lee KY, Gesta S, Boucher J, Wang XL, Kahn CR. The differential role of Hif1β/Arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab. 2011;14:491–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perrini S, Cignarelli A, Quaranta VN, Falcone VA, Kounaki S, Porro S, et al. Correction of intermittent hypoxia reduces inflammation in obese subjects with obstructive sleep apnea. JCI Insight. 2017;2. pii: 94379.

  22. Perrini S, Tortosa F, Natalicchio A, Pacelli C, Cignarelli A, Palmieri VO, et al. The p66shcprotein controls redox signaling and oxidation-dependent DNA damage in human liver cells. Am J Physiol Gastrointest Liver Physiol. 2015;309:G826–40.

    Article  CAS  PubMed  Google Scholar 

  23. Moschen AR, Wieser V, Gerner RR, Bichler A, Enrich B, Moser P, et al. Adipose tissue and liver expression of SIRT1, 3, and 6 increase after extensive weight loss in morbid obesity. J Hepatol. 2013;59:1315–22.

    Article  CAS  PubMed  Google Scholar 

  24. Pedersen SB, Ølholm J, Paulsen SK, Bennetzen MF, Richelsen B. Low Sirt1 expression, which is upregulated by fasting, in human adipose tissue from obese women. Int J Obes. 2008;32:1250–5.

    Article  CAS  Google Scholar 

  25. Song YS, Lee SK, Jang YJ, Park HS, Kim J-H, Lee YJ, et al. Association between low SIRT1 expression in visceral and subcutaneous adipose tissues and metabolic abnormalities in women with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2013;101:341–8.

    Article  CAS  PubMed  Google Scholar 

  26. Jukarainen S, Heinonen S, Rämö JT, Rinnankoski-Tuikka R, Rappou E, Tummers M, et al. Obesity is associated with low NAD+/SIRT pathway expression in adipose tissue of BMI-discordant monozygotic twins. J Clin Endocrinol Metab. 2016;101:275–83.

    Article  CAS  PubMed  Google Scholar 

  27. Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, et al. Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev. 2012;26:259–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemos V, de Oliveira RM, Naia L, Szegö É, Ramos E, Pinho S, et al. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Hum Mol Genet. 2017;26:4105–17.

    Article  CAS  PubMed  Google Scholar 

  29. Tchkonia T, Giorgadze N, Pirtskhalava T, Tchoukalova Y, Karagiannides I, Forse RA, et al. Fat depot origin affects adipogenesis in primary cultured and cloned human preadipocytes. Am J Physiol Regul Integr Comp Physiol. 2002;282:R1286–96.

    Article  CAS  PubMed  Google Scholar 

  30. Baglioni S, Cantini G, Poli G, Francalanci M, Squecco R, Di Franco A, et al. Functional differences in visceral and subcutaneous fat pads originate from differences in the adipose stem cell. PLoS ONE. 2012;7:e36569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Permana PA, Nair S, Lee Y-H, Luczy-Bachman G, Vozarova de Courten B, Tataranni PA. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity. Am J Physiol Metab. 2004;286:E958–62.

    CAS  Google Scholar 

  32. Isakson P, Hammarstedt A, Gustafson B, Smith U. Impaired preadipocyte differentiation in human abdominal obesity: role of wnt, tumor necrosis factor-alpha, and inflammation. Diabetes. 2009;58:1550–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Landgraf K, Rockstroh D, Wagner IV, Weise S, Tauscher R, Schwartze JT, et al. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children. Diabetes. 2015;64:1249–61.

    Article  CAS  PubMed  Google Scholar 

  34. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U. Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Metab. 2009;297:E999–1003.

    CAS  Google Scholar 

  35. Kursawe R, Dixit VD, Scherer PE, Santoro N, Narayan D, Gordillo R, et al. A Role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents. Diabetes. 2016;65:610–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mendes KL, Lelis DF, Santos SHS. Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev. 2017;38:98–105.

    Article  CAS  PubMed  Google Scholar 

  38. Li P, Zhao Y, Wu X, Xia M, Fang M, Iwasaki Y, et al. Interferon gamma (IFN-γ) disrupts energy expenditure and metabolic homeostasis by suppressing SIRT1 transcription. Nucleic Acids Res. 2012;40:1609–20.

    Article  CAS  PubMed  Google Scholar 

  39. Lin J, Sun B, Jiang C, Hong H, Zheng Y. Sirt2 suppresses inflammatory responses in collagen-induced arthritis. Biochem Biophys Res Commun. 2013;441:897–903.

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Qiang L, Farmer SR. Identification of a domain within peroxisome proliferator-activated receptor regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol. 2008;28:188–200.

    Article  CAS  PubMed  Google Scholar 

  41. Armoni M, Harel C, Karni S, Chen H, Bar-Yoseph F, Ver MR, et al. FOXO1 represses peroxisome proliferator-activated receptor-γ1 and -γ2 gene promoters in primary adipocytes. J Biol Chem. 2006;281:19881–91.

    Article  CAS  PubMed  Google Scholar 

  42. Guo L, Li X, Tang Q-Q. Transcriptional regulation of adipocyte differentiation: a central role for CCAAT/enhancer-binding protein (C/EBP) β. J Biol Chem. 2015;290:755–61.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997;16:7432–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 2009;5:442–7.

    Article  CAS  PubMed  Google Scholar 

  45. Visweswaran M, Schiefer L, Arfuso F, Dilley RJ, Newsholme P, Dharmarajan A. Wnt antagonist secreted frizzled-related protein 4 upregulates adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells. PLoS ONE. 2015;10:e0118005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ehrlund A, Mejhert N, Lorente-Cebrián S, Aström G, Dahlman I, Laurencikiene J, et al. Characterization of the Wnt inhibitors secreted frizzled-related proteins (SFRPs) in human adipose tissue. J Clin Endocrinol Metab. 2013;98:E503–8.

    Article  CAS  PubMed  Google Scholar 

  47. Guan H, Zhang Y, Gao S, Bai L, Zhao S, Cheng XW, et al. Differential patterns of secreted frizzled-related protein 4 (SFRP4) in adipocyte differentiation: adipose depot specificity. Cell Physiol Biochem. 2018;46:2149–64.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y, Song T, Peng J, Zhou Z, Wei H, Zhou R, et al. SIRT1 suppresses adipogenesis by activating Wnt/β-catenin signaling in vivo and in vitro. Oncotarget. 2016;7:77707–20.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all volunteers who participated to the study.

Funding

This work was supported by Ministero dell’Università e della Ricerca, Italy, and Progetti di Rilevante Interesse Nazionale and “con il contributo della Fondazione Cassa di Risparmio di Puglia.”

Author information

Authors and Affiliations

Authors

Contributions

SP and SPo were responsible for recruiting and characterization of subjects, designed experiments, analyzed data, and wrote the paper. PN, AC, CC, and VAG performed experiments and analyzed data; GM, MDF, and PC performed the adipose tissue biopsies; AN and LL analyzed data and discussed the manuscript. FG was responsible for recruiting and characterization of subjects, designed experiments, analyzed data, and wrote the paper. All authors discussed the results and implications and commented on the manuscript at all stages. FG is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Francesco Giorgino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrini, S., Porro, S., Nigro, P. et al. Reduced SIRT1 and SIRT2 expression promotes adipogenesis of human visceral adipose stem cells and associates with accumulation of visceral fat in human obesity. Int J Obes 44, 307–319 (2020). https://doi.org/10.1038/s41366-019-0436-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0436-7

This article is cited by

Search

Quick links