Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Ganglioside deficiency in hypothalamic POMC neurons promotes body weight gain

Abstract

Background

Glucosylceramide synthase (GCS; gene: UDP-glucose:ceramide glucosyltransferase (Ugcg))-derived gangliosides comprise a specific class of lipids in the plasma membrane that modulate the activity of transmembrane receptors. GCS deletion in hypothalamic arcuate nucleus (Arc) neurons leads to prominent obesity. However, it has not yet been studied how ganglioside depletion affects individual Arc neuronal subpopulations. The current study investigates the effects of GCS deletion specifically in anorexigenic pro-opiomelanocortin (POMC) neurons. Additionally, we investigate insulin receptor (IR) signaling and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) binding to ATP-dependent K+ (KATP) channels of GCS-deficient POMC neurons.

Materials and methods

We generated Ugcgf/f-Pomc-Cre mice with ganglioside deficiency in POMC neurons. Moreover, the CRISPR (clustered regulatory interspaced short palindromic repeats)/Cas9 technology was used to inhibit GCS-dependent ganglioside biosynthesis in cultured mouse POMC neurons, yielding UgcgΔ-mHypoA-POMC cells that were used to study mechanistic aspects in further detail. Proximity ligation assays (PLAs) visualized interactions between gangliosides, IR, and KATP channel subunit sulfonylurea receptor-1 (SUR-1), as well as intracellular IR substrate 2 (IRS-2) phosphorylation and PIP3.

Results

Chow-fed Ugcgf/f-Pomc-Cre mice showed a moderate but significant increase in body weight gain and they failed to display an increase of anorexigenic neuropeptide expression during the fasting-to-re-feeding transition.

IR, IRS-2, p85, and overall insulin-evoked IR and IRS-2 phosphorylation were elevated in ganglioside-depleted UgcgΔ-mHypoA-POMC neurons. A PLA demonstrated that more insulin-evoked complex formation occurred between PIP3 and SUR-1 in ganglioside-deficient POMC neurons in vitro and in vivo.

Conclusion

Our work suggests that GCS deletion in POMC neurons promotes body weight gain. Gangliosides are required for an appropriate adaptation of anorexigenic neuropeptide expression in the Arc during the fasting-to-re-feeding transition. Moreover, gangliosides might modulate KATP channel activity by restraining PIP3 binding to the KATP channel subunit SUR-1. Increased PIP3/SUR-1 interactions in ganglioside-deficient neurons could in turn potentially lead to electrical silencing. This work highlights that gangliosides in POMC neurons of the hypothalamic Arc are important regulators of body weight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature. 2000;404:661–71.

    Article  CAS  PubMed  Google Scholar 

  2. Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature. 2006;443:289–95.

    Article  CAS  PubMed  Google Scholar 

  3. Williams K, Scott M, Elmquist J. From observation to experimentation: leptin action in the mediobasal hypothalamus. Am J Clin Nutr. 2009;89:985–90.

    Article  CAS  Google Scholar 

  4. Luckman SM, Lawrence CB. Anorectic brainstem peptides: more pieces to the puzzle. Trends Endocrinol Metab. 2003;14:60–5.

    Article  CAS  PubMed  Google Scholar 

  5. Huo L, Grill HJ, Bjørbaek C. Divergent regulation of proopiomelanocortin neurons by leptin in the nucleus of the solitary tract and in the arcuate hypothalamic nucleus. Diabetes. 2006;55:567–73.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  CAS  PubMed  Google Scholar 

  7. Nordström V, Willershäuser M, Herzer S, Rozman J, von Bohlen Und Halbach O, Meldner S, et al. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol. 2013;11:e1001506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Herzer S, Meldner S, Gröne H-J, Nordström V. Fasting-induced lipolysis and hypothalamic insulin signaling are regulated by neuronal glucosylceramide synthase. Diabetes. 2015;64:3363–76.

    Article  CAS  PubMed  Google Scholar 

  9. Kolter T, Proia RL, Sandhoff K. Combinatorial ganglioside biosynthesis. J Biol Chem. 2002;277:25859–62.

    Article  CAS  PubMed  Google Scholar 

  10. Mutoh T, Tokuda, Miyadai T, Hamaguchi M, Fujiki N. Ganglioside GM1 binds to the Trk protein and regulates receptor function. Proc Natl Acad Sci USA. 1995;92:5087–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kabayama K, Sato T, Saito K, Loberto N, Prinetti A, Sonnino S, et al. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc Natl Acad Sci USA. 2007;104:13678–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lang Z, Guerrera M, Li R, Ladisch S. Ganglioside GD1a enhances VEGF-induced endothelial cell proliferation and migration. Biochem Biophys Res Commun. 2001;282:1031–7.

    Article  CAS  PubMed  Google Scholar 

  13. Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. New York: Springer; 2010. p. 165–84.

  14. Nordström V, Herzer S. Modification of membrane lipids protects neurons against insulin resistance in models of Alzheimer’s disease. e-Neuroforum. 2017;23:A157–A166.

    Google Scholar 

  15. Cone RD. Anatomy and regulation of the central melanocortin system. Nat Neurosci. 2005;8:571–8.

    Article  CAS  PubMed  Google Scholar 

  16. Backer JM, Myers MG, Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, et al. Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 1992;11:3469–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mirshamsi S, Laidlaw H, Ning K, Anderson E, Burgess LA, Gray A, et al. Leptin and insulin stimulation of signalling pathways in arcuate nucleus neurones: PI3K dependent actin reorganization and KATP channel activation. BMC Neurosci. 2004;5:54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.

    Article  CAS  PubMed  Google Scholar 

  19. Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature. 1979;282:503–5.

    Article  CAS  PubMed  Google Scholar 

  20. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL. Is the energy homeostasis system inherently biased toward weight gain? Diabetes. 2003;52:232–8.

    Article  CAS  PubMed  Google Scholar 

  21. Van HoutenM, Posner BI, Kopriwa BM, Brawer JR. Insulin-binding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography*. Endocrinology. 1979;105:666–73.

    Article  Google Scholar 

  22. Plum L, Ma X, Hampel B, Balthasar N, Coppari R, Münzberg H, et al. Enhanced PIP3 signaling in POMC neurons causes KATP channel activation and leads to diet-sensitive obesity. J Clin Invest. 2006;116. https://doi.org/10.1172/JCI27123.1886.

  23. Choudhury AI, Heffron H, Smith MA, Al-Qassab H, Xu AW, Selman C, et al. The role of insulin receptor substrate 2 in hypothalamic and beta cell function. J Clin Invest. 2005;115:940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shyng SL, Nichols CG. Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science. 1998;282:1138–41.

    Article  CAS  PubMed  Google Scholar 

  25. Scherer T, O’Hare J, Diggs-Andrews K. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jennemann R, Sandhoff R, Wang S, Kiss E, Gretz N, Zuliani C, et al. Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci USA. 2005;102:12459–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cowley M, Smart JL, Rubinstein M, Cerdán MG, Diano S, Horvath TL, et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature. 2001;411:480–4.

    Article  CAS  PubMed  Google Scholar 

  28. Herzer S, Meldner S, Rehder K, Gröne H-J, Nordström V. Lipid microdomain modification sustains neuronal viability in models of Alzheimer’s disease. Acta Neuropathol Commun. 2016;4. https://doi.org/10.1186/s40478-016-0354-z.

  29. el Marjou F, Janssen K-P, Chang BH-J, Li M, Hindie V, Chan L, et al. Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis. 2004;39:186–93.

    Article  CAS  PubMed  Google Scholar 

  30. Jennemann R, Federico G, Mathow D, Rabionet M, Rampoldi F, Popovic ZV, et al. Inhibition of hepatocellular carcinoma growth by blockade of glycosphingolipid synthesis. Oncotarget. 2017;8:109201–16.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Delgado-Cañ AS, Ae E, Garcia D, Santos D, José A, Bogo A, et al. Optimization of an electroporation protocol using the K562 cell line as a model: role of cell cycle phase and cytoplasmic DNAses. Cytotechnology. 2006. https://doi.org/10.1007/s10616-006-9028-1.

  32. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42:983–91.

    Article  CAS  PubMed  Google Scholar 

  33. Xu AW, Ste-Marie L, Kaelin CB, Barsh GS. Inactivation of signal transducer and activator of transcription 3 in proopiomelanocortin (Pomc) neurons causes decreased pomc expression, mild obesity, and defects in compensatory refeeding. Endocrinology. 2007;148:72–80.

    Article  CAS  PubMed  Google Scholar 

  34. Padilla SL, Reef D, Zeltser LM. Defining POMC neurons using transgenic reagents: impact of transient Pomc expression in diverse immature neuronal populations. Endocrinology. 2012;153:1219–31.

    Article  CAS  PubMed  Google Scholar 

  35. Wu Q, Lemus MB, Stark R, Bayliss JA, Reichenbach A, Lockie SH, et al. The temporal pattern of cfos activation in hypothalamic, cortical, and brainstem nuclei in response to fasting and refeeding in male mice. Endocrinology. 2014;155:840–53.

    Article  CAS  PubMed  Google Scholar 

  36. Bady I, Marty N, Dallaporta M, Emery M, Gyger J El, Tarussio D, et al. Evidence from Glut2-null mice that glucose is a critical physiological regulator of feeding. Diabetes. http://diabetes.diabetesjournals.org/content/diabetes/55/4/988.full.pdf. Accessed 2 Mar 2018.

  37. Fagerholm S, Ortegren U, Karlsson M, Ruishalme I, Strålfors P. Rapid insulin-dependent endocytosis of the insulin receptor by caveolae in primary adipocytes. PLoS ONE. 2009;4:e5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu A, Kaelin C, Takeda K. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest. 2005;115:951–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plum L, Belgardt B, Brüning J. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116. https://doi.org/10.1172/JCI29063.

  40. Tagami S, Inokuchi JiJ, Kabayama K, Yoshimura H, Kitamura F, Uemura S, et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem. 2002;277:3085–92.

    Article  CAS  PubMed  Google Scholar 

  41. Inokuchi J-I. GM3 and diabetes. Glycoconj J. 2014;31:193–7.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao H, Przybylska M, Wu I-H, Zhang J, Maniatis P, Pacheco J, et al. Inhibiting glycosphingolipid synthesis ameliorates hepatic steatosis in obese mice. Hepatology. 2009;50:85–93.

    Article  CAS  PubMed  Google Scholar 

  43. Yamashita T, Hashiramoto A, Haluzik M, Mizukami H, Beck S, Norton A, et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci USA. 2003;100:3445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kohyama-Koganeya A, Nabetani T, Miura M, Hirabayashi Y. Glucosylceramide synthase in the fat body controls energy metabolism in Drosophila. J Lipid Res. 2011;52:1392–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lopez PH, Aja S, Aoki K, Seldin MM, Lei X, Ronnett GV, et al. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance. Glycobiology. 2017;27:129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu G, Xie X, Lu ZH, Ledeen RW. Cerebellar neurons lacking complex gangliosides degenerate in the presence of depolarizing levels of potassium. Proc Natl Acad Sci USA. 2001;98:307–12.

    Article  CAS  PubMed  Google Scholar 

  47. Skaper SD, Katoh-Semba R, Varon S. GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Dev Brain Res. 1985;23:19–26.

    Article  CAS  Google Scholar 

  48. Harno E, Cottrell EC, White A. Metabolic pitfalls of CNS Cre-based technology. Cell Metab. 2013;18:21–28.

    Article  CAS  PubMed  Google Scholar 

  49. Shen Y, Tian M, Zheng Y, Gong F, Fu AKY, Ip NY. Stimulation of the hippocampal POMC/MC4R circuit alleviates synaptic plasticity impairment in an Alzheimer’s disease model. Cell Rep. 2016;17:1819–31.

    Article  CAS  PubMed  Google Scholar 

  50. Swart I, Jahng JW, Overton JM, Houpt TA. Hypothalamic NPY, AGRP, and POMC mRNA responses to leptin and refeeding in mice. Am J Physiol Regul Integr Comp Physiol. http://www.physiology.org/doi/pdf/10.1152/ajpregu.00501.2001. Accessed 2 Mar 2018.

  51. Brüning JC, Gautam D, Burks DJ, Gilette J, Schubert M, Orban PC, et al. Role of brain insulin receptor in control of body weight and reproduction. Science (80-). 2000;289:2122–5.

    Article  Google Scholar 

  52. Lin H, Plum L, Ono H. Divergent regulation of energy expenditure and hepatic glucose production by insulin receptor in agouti-related protein and POMC neurons. Diabetes. 2010. https://doi.org/10.2337/db09-1303.

  53. Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white adipose tissue metabolism. Rev Endocr Metab Disord. 2011;12:235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang L, Takaku S, Wang P, Hu D, Hyuga S, Sato T, et al. Ganglioside GD1a regulation of caveolin-1 and Stim1 expression in mouse FBJ cells: augmented expression of caveolin-1 and Stim1 in cells with increased GD1a content. Glycoconj J. 2006;23:303–15.

    Article  CAS  PubMed  Google Scholar 

  55. Liu Y, Li R, Ladisch S. Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem. 2004;279:36481–9.

    Article  CAS  PubMed  Google Scholar 

  56. Dorfman MD, Krull JE, Scarlett JM, Guyenet SJ, Sajan MP, Damian V, et al. Deletion of protein kinase C λ in POMC neurons predisposes to diet-induced obesity. Diabetes. 2017;66:920–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ji S, Tokizane K, Ohkawa Y, Ohmi Y, Banno R, Okajima T, et al. Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochem Biophys Res Commun. 2016. https://doi.org/10.1016/j.bbrc.2016.09.077.

Download references

Acknowledgements

V.N. received funding from the Deutsche Forschungsgemeinschaft (NO 1107/1-1) and S.H. received funding from the Deutsche Forschungsgemeinschaft (HE 7978/1-1). We thank Gabi Schmidt and Claudia Schmidt for expert technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

V.N. is the guarantor of the data and, as such, ensures data integrity. V.N. conceived the research, designed experiments, analyzed data, and wrote the manuscript. S.H. designed and performed experiments, V.D. performed experiments and analyzed data, H.-J.G. provided critical input to the manuscript, and R.J. performed CRISPR/Cas9 cloning. All authors assisted with revising the manuscript.

Corresponding author

Correspondence to V. Nordström.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dieterle, V., Herzer, S., Gröne, HJ. et al. Ganglioside deficiency in hypothalamic POMC neurons promotes body weight gain. Int J Obes 44, 510–524 (2020). https://doi.org/10.1038/s41366-019-0388-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-019-0388-y

This article is cited by

Search

Quick links