Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biochemistry/Physiology

Adrenomedullary function, obesity and permissive influences of catecholamines on body mass in patients with chromaffin cell tumours

Abstract

Background

Obesity-associated activation of sympathetic nervous outflow is well documented, whereas involvement of dysregulated adrenomedullary hormonal function in obesity is less clear. This study assessed relationships of sympathoadrenal function with indices of obesity and influences of circulating catecholamines on body mass.

Methods

Anthropometric and clinical data along with plasma and 24-h urine samples were collected from 590 volunteers and 1368 patients tested for phaeochromocytoma and paraganglioma (PPGL), among whom tumours were diagnosed in 210 individuals.

Results

Among patients tested for PPGL, those with tumours less often had a body mass index (BMI) above 30 kg/m2 (12 vs. 31%) and more often a BMI under 25 kg/m2 (56 vs. 32%) than those without tumours (P < 0.0001). Urinary outputs of catecholamines in patients with PPGL were negatively related to BMI (r = −0.175, P = 0.0133). Post-operative weight gain (P < 0.0001) after resection of PPGL was positively related to presurgical tumoural catecholamine output (r = 0.257, P = 0.0101). Higher BMI in men and women and percent body fat in women of the volunteer group were associated with lower plasma concentrations and urinary outputs of adrenaline and metanephrine, the former indicating obesity-related reduced adrenaline secretion and the latter obesity-related reduced adrenomedullary adrenaline stores. Daytime activity was associated with substantial increases in urinary adrenaline and noradrenaline excretion, with blunted responses in obese subjects.

Conclusions

The findings in patients with PPGL support an influence of high circulating catecholamines on body weight. Additional associations of adrenomedullary dysfunction with obesity raise the possibility of a permissive influence of the adrenal medulla on the regulation of body weight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cryer PE. Adrenaline: a physiological metabolic regulatory hormone in humans? Int J Obes Relat Metab Disord. 1993;17(Suppl 3):S43–6.

    CAS  PubMed  Google Scholar 

  2. Esler M. The sympathetic nervous system through the ages: from Thomas Willis to resistant hypertension. Exp Physiol. 2011;96:611–22.

    PubMed  Google Scholar 

  3. Robertson D, Johnson GA, Robertson RM, Nies AS, Shand DG, Oates JA. Comparative assessment of stimuli that release neuronal and adrenomedullary catecholamines in man. Circulation. 1979;59:637–43.

    Article  CAS  PubMed  Google Scholar 

  4. Esler M. Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol Toxicol. 1993;73:243–53.

    Article  CAS  PubMed  Google Scholar 

  5. Charkoudian N, Wallin BG. Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics. Compr Physiol. 2014;4:825–50.

    CAS  PubMed  Google Scholar 

  6. Esler M, Jennings G, Lambert G, Meredith I, Horne M, Eisenhofer G. Overflow of catecholamine neurotransmitters to the circulation: source, fate, and functions. Physiol Rev. 1990;70:963–85.

    Article  CAS  PubMed  Google Scholar 

  7. Lambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP. Sympathetic nervous activation in obesity and the metabolic syndrome--causes, consequences and therapeutic implications. Pharmacol Ther. 2010;126:159–72.

    Article  CAS  PubMed  Google Scholar 

  8. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, Giannattasio C, Brunani A, Cavagnini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.

    Article  CAS  PubMed  Google Scholar 

  9. Jones PP, Davy KP, Seals DR. Relations of total and abdominal adiposity to muscle sympathetic nerve activity in healthy older males. Int J Obes Relat Metab Disord. 1997;21:1053–7.

    Article  CAS  PubMed  Google Scholar 

  10. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423–9.

    Article  CAS  PubMed  Google Scholar 

  11. Peterson HR, Rothschild M, Weinberg CR, Fell RD, McLeish KR, Pfeifer MA. Body fat and the activity of the autonomic nervous system. N Engl J Med. 1988;318:1077–83.

    Article  CAS  PubMed  Google Scholar 

  12. Young JB, Macdonald IA. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int J Obes Relat Metab Disord. 1992;16:959–67.

    CAS  PubMed  Google Scholar 

  13. Astrup A, Andersen T, Christensen NJ, Bulow J, Madsen J, Breum L, et al. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans. Am J Clin Nutr. 1990;51:331–7.

    Article  CAS  PubMed  Google Scholar 

  14. Straznicky NE, Lambert GW, Masuo K, Dawood T, Eikelis N, Nestel PJ, et al. Blunted sympathetic neural response to oral glucose in obese subjects with the insulin-resistant metabolic syndrome. Am J Clin Nutr. 2009;89:27–36.

    Article  CAS  PubMed  Google Scholar 

  15. Del Rio G. Adrenomedullary function and its regulation in obesity. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S89–91.

    PubMed  Google Scholar 

  16. Lee ZS, Critchley JA, Tomlinson B, Young RP, Thomas GN, Cockram CS. C et al. Urinary epinephrine and norepinephrine interrelations with obesity, insulin, and the metabolic syndrome in Hong Kong Chinese. Metabolism. 2001;50:135–43.

    Article  CAS  PubMed  Google Scholar 

  17. Reimann M, Qin N, Gruber M, Bornstein SR, Kirschbaum C, Ziemssen T, et al. Adrenal medullary dysfunction as a feature of obesity. Int J Obes (Lond). 2017;41:714–21.

    Article  CAS  Google Scholar 

  18. van Baak MA. The peripheral sympathetic nervous system in human obesity. Obes Rev. 2001;2:3–14.

    Article  PubMed  Google Scholar 

  19. Flaa A, Sandvik L, Kjeldsen SE, Eide IK, Rostrup M. Does sympathoadrenal activity predict changes in body fat? An 18-y follow-up study. Am J Clin Nutr. 2008;87:1596–601.

    Article  CAS  PubMed  Google Scholar 

  20. Ziegler MG, Milic M, Sun P, Tang CM, Elayan H, Bao X, et al. Endogenous epinephrine protects against obesity induced insulin resistance. Auton Neurosci. 2011;162:32–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Petrak O, Haluzikova D, Kavalkova P, Strauch B, Rosa J, Holaj R, et al. Changes in energy metabolism in pheochromocytoma. J Clin Endocrinol Metab. 2013;98:1651–8.

    Article  CAS  PubMed  Google Scholar 

  22. Okamura T, Nakajima Y, Satoh T, Hashimoto K, Sapkota S, Yamada E, et al. Changes in visceral and subcutaneous fat mass in patients with pheochromocytoma. Metabolism. 2015;64:706–12.

    Article  CAS  PubMed  Google Scholar 

  23. Rao D, Peitzsch M, Prejbisz A, Hanus K, Fassnacht M, Beuschlein F, et al. Plasma methoxytyramine: clinical utility with metanephrines for diagnosis of pheochromocytoma and paraganglioma. Eur J Endocrinol. 2017;177:103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eisenhofer G, Goldstein DS, Stull R, Keiser HR, Sunderland T, Murphy DL, et al. Simultaneous liquid-chromatographic determination of 3,4-dihydroxyphenylglycol, catecholamines, and 3,4-dihydroxyphenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin Chem. 1986;32:2030–3.

    CAS  PubMed  Google Scholar 

  25. Peitzsch M, Pelzel D, Glockner S, Prejbisz A, Fassnacht M, Beuschlein F, et al. Simultaneous liquid chromatography tandem mass spectrometric determination of urinary free metanephrines and catecholamines, with comparisons of free and deconjugated metabolites. Clin Chim Acta. 2013;418:50–58.

    Article  CAS  PubMed  Google Scholar 

  26. Peitzsch M, Prejbisz A, Kroiss M, Beuschlein F, Arlt W, Januszewicz A, et al. Analysis of plasma 3-methoxytyramine, normetanephrine and metanephrine by ultraperformance liquid chromatography-tandem mass spectrometry: utility for diagnosis of dopamine-producing metastatic phaeochromocytoma. Ann Clin Biochem. 2013;50:147–55.

    CAS  PubMed  Google Scholar 

  27. Eisenhofer G, Klink B, Richter S, Lenders JW, Robledo M. Metabologenomics of phaeochromocytoma and paraganglioma: an integrated approach for personalised biochemical and genetic testing. Clin Biochem Rev. 2017;38:69–100.

    PubMed  PubMed Central  Google Scholar 

  28. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii. 1-253

    Google Scholar 

  29. Aroor AR, McKarns S, Demarco VG, Jia G, Sowers JR. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism. 2013;62:1543–52.

    Article  CAS  PubMed  Google Scholar 

  30. Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, Cavagnini F, et al. Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation. 1998;97:2037–42.

    Article  CAS  PubMed  Google Scholar 

  31. Pontiroli AE, Pizzocri P, Paroni R, Folli F. Sympathetic overactivity, endothelial dysfunction, inflammation, and metabolic abnormalities cluster in grade III (World Health Organization) obesity: reversal through sustained weight loss obtained with laparoscopic adjustable gastric banding. Diabetes Care. 2006;29:2735–8.

    Article  PubMed  Google Scholar 

  32. Straznicky NE, Grima MT, Eikelis N, Nestel PJ, Dawood T, Schlaich MP, et al. The effects of weight loss versus weight loss maintenance on sympathetic nervous system activity and metabolic syndrome components. J Clin Endocrinol Metab. 2011;96:E503–508.

    Article  CAS  PubMed  Google Scholar 

  33. Curry TB, Somaraju M, Hines CN, Groenewald CB, Miles JM, Joyner MJ, et al. Sympathetic support of energy expenditure and sympathetic nervous system activity after gastric bypass surgery. Obesity (Silver Spring). 2013;21:480–5.

    Article  Google Scholar 

  34. Straznicky NE, Grima MT, Sari CI, Lambert EA, Phillips SE, Eikelis N, et al. Comparable attenuation of sympathetic nervous system activity in obese subjects with normal glucose tolerance, impaired glucose tolerance, and treatment naive type 2 diabetes following equivalent weight loss. Front Physiol. 2016;7:516.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lambert EA, Rice T, Eikelis N, Straznicky NE, Lambert GW, Head GA, et al. Sympathetic activity and markers of cardiovascular risk in nondiabetic severely obese patients: the effect of the initial 10% weight loss. Am J Hypertens. 2014;27:1308–15.

    Article  CAS  PubMed  Google Scholar 

  36. Tataranni PA, Young JB, Bogardus C, Ravussin E. A. low sympathoadrenal activity is associated with body weight gain and development of central adiposity in Pima Indian men. Obes Res. 1997;5:341–7.

    Article  CAS  PubMed  Google Scholar 

  37. von Ruesten A, Steffen A, Floegel A, van der AD, Masala G, Tjonneland A, et al. Trend in obesity prevalence in European adult cohort populations during follow-up since 1996 and their predictions to 2015. PLoS One. 2011;6:e27455.

    Article  CAS  Google Scholar 

  38. Marques A, Peralta M, Naia A, Loureiro N, de Matos MG Prevalence of adult overweight and obesity in 20 European countries, 2014. Eur J Public Health. 2017. https://doi.org/10.1093/eurpub/ckx143.

  39. Blundell JE, Baker JL, Boyland E, Blaak E, Charzewska J, de Henauw S, et al. Variations in the prevalence of obesity among European Countries, and a consideration of possible causes. Obes Facts. 2017;10:25–37.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.

    Article  CAS  PubMed  Google Scholar 

  41. Bravo EL, Tarazi RC, Fouad FM, Textor SC, Gifford RW Jr., Vidt DG. Blood pressure regulation in pheochromocytoma. Hypertension. 1982;4:193–9.

    CAS  PubMed  Google Scholar 

  42. Grassi G, Seravalle G, Turri C, Mancia G. Sympathetic nerve traffic responses to surgical removal of pheochromocytoma. Hypertension. 1999;34:461–5.

    Article  CAS  PubMed  Google Scholar 

  43. Eisenhofer G, Rundquist B, Aneman A, Friberg P, Dakak N, Kopin IJ, et al. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab. 1995;80:3009–17.

    CAS  PubMed  Google Scholar 

  44. Lambert E, Straznicky N, Eikelis N, Esler M, Dawood T, Masuo K, et al. Gender differences in sympathetic nervous activity: influence of body mass and blood pressure. J Hypertens. 2007;25:1411–9.

    Article  CAS  PubMed  Google Scholar 

  45. Penev P, Spiegel K, Marcinkowski T, Van Cauter E. Impact of carbohydrate-rich meals on plasma epinephrine levels: dysregulation with aging. J Clin Endocrinol Metab. 2005;90:6198–206.

    Article  CAS  PubMed  Google Scholar 

  46. Vollenweider P, Randin D, Tappy L, Jequier E, Nicod P, Scherrer U. Impaired insulin-induced sympathetic neural activation and vasodilation in skeletal muscle in obese humans. J Clin Invest. 1994;93:2365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Masuo K, Katsuya T, Kawaguchi H, Fu Y, Rakugi H, Ogihara T, et al. Beta2-adrenoceptor polymorphisms relate to obesity through blunted leptin-mediated sympathetic activation. Am J Hypertens. 2006;19:1084–91.

    Article  CAS  PubMed  Google Scholar 

  48. Vettor R, Macor C, Rossi E, Piemonte G, Federspil G. Impaired counterregulatory hormonal and metabolic response to exhaustive exercise in obese subjects. Acta Diabetol. 1997;34:61–66.

    Article  CAS  PubMed  Google Scholar 

  49. Matthews DE, Pesola G, Campbell RG. Effect of epinephrine on amino acid and energy metabolism in humans. Am J Physiol. 1990;258:E948–956.

    CAS  PubMed  Google Scholar 

  50. Raz I, Katz A, Spencer MK. Epinephrine inhibits insulin-mediated glycogenesis but enhances glycolysis in human skeletal muscle. Am J Physiol. 1991;260:E430–435.

    CAS  PubMed  Google Scholar 

  51. Laurent D, Petersen KF, Russell RR, Cline GW, Shulman GI. Effect of epinephrine on muscle glycogenolysis and insulin-stimulated muscle glycogen synthesis in humans. Am J Physiol. 1998;274:E130–138.

    CAS  PubMed  Google Scholar 

  52. Ensinger H, Lindner KH, Dirks B, Kilian J, Grunert A, Ahnefeld FW. Adrenaline: relationship between infusion rate, plasma concentration, metabolic and haemodynamic effects in volunteers. Eur J Anaesthesiol. 1992;9:435–46.

    CAS  PubMed  Google Scholar 

  53. Ratheiser KM, Brillon DJ, Campbell RG, Matthews DE. Epinephrine produces a prolonged elevation in metabolic rate in humans. Am J Clin Nutr. 1998;68:1046–52.

    Article  CAS  PubMed  Google Scholar 

  54. Jocken JW, Goossens GH, van Hees AM, Frayn KN, van Baak M, Stegen J, et al. Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men. Diabetologia. 2008;51:320–7.

    Article  CAS  PubMed  Google Scholar 

  55. Horowitz JF, Klein S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab. 2000;278:E1144–1152.

    Article  CAS  PubMed  Google Scholar 

  56. Kopin IJ, Zukowska-Grojec Z, Bayorh MA, Goldstein DS. Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiede Arch Pharmacol. 1984;325:298–305.

    Article  CAS  Google Scholar 

  57. Eisenhofer G. Concentrations of noradrenaline at neuronal uptake sites during sympathetic nervous inhibition and activation in rabbits. Neurochem Int. 1993;22:493–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bennett MR, Farnell L, Gibson WG, Blair D. A quantitative description of the diffusion of noradrenaline in the media of blood vessels following its release from sympathetic varicosities. J Theor Biol. 2004;226:359–72.

    Article  CAS  PubMed  Google Scholar 

  59. Ruffolo RR Jr.. Distribution and function of peripheral alpha-adrenoceptors in the cardiovascular system. Pharmacol Biochem Behav. 1985;22:827–33.

    Article  CAS  PubMed  Google Scholar 

  60. Lipe S, Summers RJ. Autoradiographic analysis of the distribution of beta-adrenoceptors in the dog splenic vasculature. Br J Pharmacol. 1986;87:603–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the patients and volunteers who participated in this study, the technical assistance of Denise Kaden, Catleen Conrad and Tina Fleischer as well as assistance with patients and volunteers by Carola Kunath and Christina Pamporaki. The study was supported by grants from the Deutsche Forschungsgemeinschaft to GE and JWML (EI855/1/2, KFO252) and the European Union Seventh Framework Programme (FP7/2007-2013) to GE, FB and AS under grant agreement 259735 (ENS@T-Cancer).

Funding

This study was supported by grants from the Deutsche Forschungsgemeinschaft to GE and JWML (EI855/1/2, KFO252) and the European Union Seventh Framework Programme (FP7/2007-2013) to GE, FB and AS under grant agreement 259735 (ENS@T-Cancer). The authors declare no conflict of interests.

Author contributions:

AY, MR, SRB and GE were responsible for the study concept as well as the interpretation and analyses of data. JM, KL, TD, MF, NR-L, FB, SF AP, AJ and JL were responsible for recruitment of patients and collections of clinical data and specimens. MP and GE oversaw laboratory analyses. AS was responsible for electronic data collection. AY and GE were responsible for drafting the manuscript, after which all authors made substantive contributions to the final approved version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme Eisenhofer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Y., Reimann, M., Masjkur, J. et al. Adrenomedullary function, obesity and permissive influences of catecholamines on body mass in patients with chromaffin cell tumours. Int J Obes 43, 263–275 (2019). https://doi.org/10.1038/s41366-018-0054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-018-0054-9

Search

Quick links