Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Whole exome sequencing and transcriptome analysis in two unrelated patients with novel SET mutations

Abstract

The human SET nuclear proto-oncogene (SET) gene is a protein-coding gene that encodes proteins that affects chromatin remodeling and gene transcription. Mutations in the SET gene have been reported to cause intellectual disability (ID) and epilepsy. In this study, we collected and analyzed clinical, genetic, and transcript features of two unrelated Chinese patients with ID. Both patients were characterized by moderate intellectual disability. Whole-exome sequencing identified two novel heterozygous mutations in the SET gene: NM_001122821.1:c.532-3 T > A and NM_001122821.1:c.3 G > C (p.0?). Additionally, RNA sequencing revealed widespread dysregulation of genes involved in NF-kB signaling and neuronal system in these two patients. To our knowledge, this is the first report of SET mutations causing ID in the Chinese population, broadening the genetic and ethnic spectrum of SET-related disorders and highlighting the importance of screening for SET gene variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clinical characteristics of the two patients.
Fig. 2: Alternative splicing isoforms of the SET gene in patient 1.
Fig. 3: RT-qPCR of the SET gene in the patients
Fig. 4: Differentially expressed genes and enriched KEGG pathways
Fig. 5: Gene set enrichment analysis (GSEA) identifies dysregulated KEGG pathways in the patients.
Fig. 6: Summary of P/LP variants in the SET gene cause ID.

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author, (BT), on reasonable request.

References

  1. Moeschler JB, Shevell M, Committee on G. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014;134:e903–18.

    Article  PubMed  Google Scholar 

  2. Patel DR, Cabral MD, Ho A, Merrick J. A clinical primer on intellectual disability. Transl Pediatr. 2020;9:S23–35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baker K, Devine RT, Ng-Cordell E, Raymond FL, consortium I-I, Hughes C. Childhood intellectual disability and parents’ mental health: integrating social, psychological and genetic influences. Br J Psychiatry. 2021;218:315–22.

    Article  PubMed  Google Scholar 

  4. Jarvela I, Maatta T, Acharya A, Leppala J, Jhangiani SN, Arvio M, et al. Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland. Hum Genet. 2021;140:1011–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pavinato L, Trajkova S, Grosso E, Giorgio E, Bruselles A, Radio FC, et al. Expanding the clinical phenotype of the ultra-rare Skraban-Deardorff syndrome: two novel individuals with WDR26 loss-of-function variants and a literature review. Am J Med Genet A. 2021;185:1712–20.

    Article  PubMed  Google Scholar 

  6. Brunet T, Jech R, Brugger M, Kovacs R, Alhaddad B, Leszinski G, et al. De novo variants in neurodevelopmental disorders-experiences from a tertiary care center. Clin Genet. 2021;100:14–28.

    Article  CAS  PubMed  Google Scholar 

  7. Vetrini F, McKee S, Rosenfeld JA, Suri M, Lewis AM, Nugent KM, et al. De novo and inherited TCF20 pathogenic variants are associated with intellectual disability, dysmorphic features, hypotonia, and neurological impairments with similarities to Smith-Magenis syndrome. Genome Med. 2019;11:12.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stevens SJC, van der Schoot V, Leduc MS, Rinne T, Lalani SR, Weiss MM, et al. De novo mutations in the SET nuclear proto-oncogene, encoding a component of the inhibitor of histone acetyltransferases (INHAT) complex in patients with nonsyndromic intellectual disability. Hum Mutat. 2018;39:1014–23.

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Makkinje A, Damuni Z. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. J Biol Chem. 1996;271:11059–62.

    Article  CAS  PubMed  Google Scholar 

  10. von Lindern M, van Baal S, Wiegant J, Raap A, Hagemeijer A, Grosveld G. Can, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3’ half to different genes: characterization of the set gene. Mol Cell Biol. 1992;12:3346–55.

    Google Scholar 

  11. Liu L, Feng X, Liu S, Zhou Y, Dong X, Yao H, et al. Whole-genome sequencing combined RNA-sequencing analysis of patients with mutations in SET binding protein 1. Front Neurosci. 2022;16:980000.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hamdan FF, Srour M, Capo-Chichi JM, Daoud H, Nassif C, Patry L, et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 2014;10:e1004772.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang L, Gao J, Liu H, Tian Y, Zhang X, Lei W, et al. Pathogenic variants identified by whole-exome sequencing in 43 patients with epilepsy. Hum Genom. 2020;14:44.

    Article  Google Scholar 

  14. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062–7.

    Article  CAS  PubMed  Google Scholar 

  17. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu X, Li C, Mou C, Dong Y, Tu Y. dbNSFP v4: a comprehensive database of transcript-specific functional predictions and annotations for human nonsynonymous and splice-site SNVs. Genome Med. 2020;12:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The ensembl variant effect predictor. Genome Biol. 2016;17:122.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat. 2003;21:577–81.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan X, Bai J, Zhang J, Yang L, Duan J, Li Y, et al. CONDEL: detecting copy number variation and genotyping deletion zygosity from single tumor samples using sequence data. IEEE/ACM Trans Comput Biol Bioinform. 2020;17:1141–53.

    CAS  PubMed  Google Scholar 

  22. Steinhaus R, Proft S, Schuelke M, Cooper DN, Schwarz JM, Seelow D. MutationTaster2021. Nucleic Acids Res. 2021;49:W446–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Wu C, Li C, Boerwinkle E. dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat. 2016;37:235–41.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, et al. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.e24.

    Article  CAS  PubMed  Google Scholar 

  27. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comput Biol. 2010;6:e1001025.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  31. Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–30.

    Article  Google Scholar 

  32. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Griffin AM, Cleveland HH, Schlomer GL, Vandenbergh DJ, Feinberg ME. Differential susceptibility: the genetic moderation of peer pressure on alcohol use. J Youth Adolesc. 2015;44:1841–53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yu G, He QY. ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst. 2016;12:477–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Riggs ER, Bingaman TI, Barry CA, Behlmann A, Bluske K, Bostwick B, et al. Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels. Genet Med. 2022;24:1899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marinakis NM, Svingou M, Veltra D, Kekou K, Sofocleous C, Tilemis FN, et al. Phenotype-driven variant filtration strategy in exome sequencing toward a high diagnostic yield and identification of 85 novel variants in 400 patients with rare Mendelian disorders. Am J Med Genet A. 2021;185:2561–71.

    Article  CAS  PubMed  Google Scholar 

  38. Richardson R, Splitt M, Newbury-Ecob R, Hulbert A, Kennedy J, Weber A, et al. SET de novo frameshift variants associated with developmental delay and intellectual disabilities. Eur J Hum Genet. 2018;26:1306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.

    Article  Google Scholar 

  40. Zhang X, Wu Y, Duan X, Chen W, Zou H, Zhang M, et al. Upregulation of SET expression by BACE1 and its implications in Down syndrome. Mol Neurobiol. 2015;51:781–90.

    Article  CAS  PubMed  Google Scholar 

  41. Li J, He Q, Wang L, Chen D, Qiu C, Xu P, et al. SET knockdown attenuated phenotype modulation and calcium channel associated markers of airway smooth muscle cells in asthmatic mice. Ann Transl Med. 2021;9:657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the patients and their family members for their participation in this study.

Funding

This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202200420), Nan’an District Science and Health Joint Medical Scientific Research Project (2020-01), Program for Youth Innovation in Future Medicine, Chongqing Medical University (W0122), and Maternal and Child Health Research Cultivation Project of the Chongqing Health Commission (2023FY201).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XP, SL, XF and BT; Data curation: XP; Formal Analysis: SL, XF and BT; Funding acquisition: HY, XD and BT; Investigation: LL, ZX, GQ and NL; Project administration: HY, XD and BT, Supervision: HY, XD and BT; Visualization: SL, XF and BT; Writing – original draft: SL, XF and BT; Writing – review & editing: HY, XD and BT.

Corresponding author

Correspondence to Bo Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Liu, S., Feng, X. et al. Whole exome sequencing and transcriptome analysis in two unrelated patients with novel SET mutations. J Hum Genet 68, 867–874 (2023). https://doi.org/10.1038/s10038-023-01196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01196-4

Search

Quick links