Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Novel compound heterozygous mutation and phenotype in the tetratricopeptide repeat-like domain of the GEMIN5 gene in two Chinese families

Abstract

Background

GEMIN5 is an RNA-binding protein that regulates multiple molecular functions, including splicing, localisation, translation, and mRNA stability. GEMIN5 mutations present a syndrome centred on cerebellar dysplasia, including motor dysfunction, developmental delay, cerebellar atrophy, and hypotonia.

Cases

We report three patients from two families with novel compound heterozygous mutations in the tetratricopeptide repeat-like domain of the GEMIN5 gene who presented with motor dysfunction, developmental delay, and ataxia syndrome.

Novel variants were identified: c.2551_c.2552delCT (Leu851Glufs*30) and c.2911 C > G (Gln971Glu) in Family 1, and c.3287 T > C (Leu1096Pro) and c.2882 G > C (Trp961 Ser) in Family 2, which were inherited from their parents. Moreover, infantile spasms syndrome(ISs) was diagnosed in the family.

Conclusion

We report the first case of ISs caused by GEMIN5 gene mutations. Our cases expand on GEMIN5 variants and neurological phenotypes, reinforcing the crucial impact of tetratricopeptide repeat-like domain variants in the GEMIN5 gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

References

  1. Matera AG, Raimer AC, Schmidt CA, Kelly JA, Droby GN, Baillat D, et al. Composition of the survival motor neuron (SMN) complex in Drosophila melanogaster. G3 (Bethesda). 2019;9:491–503.

    Article  PubMed  CAS  Google Scholar 

  2. Francisco-Velilla R, Embarc-Buh A, Rangel-Guerrero S, Basu S, Kundu S, Martinez-Salas E. RNA-protein coevolution study of Gemin5 uncovers the role of the PXSS motif of RBS1 domain for RNA binding. RNA Biol. 2020;17:1331–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Saida K, Tamaoki J, Sasaki M, Haniffa M, Koshimizu E, Sengoku T, et al. Pathogenic variants in the survival of motor neurons complex gene GEMIN5 cause cerebellar atrophy. Clin Genet. 2021;100:722–30.

    Article  PubMed  CAS  Google Scholar 

  4. Rajan DS, Kour S, Fortuna TR, Cousin MA, Barnett SS, Niu Z, et al. Autosomal recessive cerebellar atrophy and spastic ataxia in patients with pathogenic biallelic variants in GEMIN5. Front Cell Dev Biol. 2022;10:783762.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kour S, Rajan DS, Fortuna TR, Anderson EN, Ward C, Lee Y, et al. Loss of function mutations in GEMIN5 cause a neurodevelopmental disorder. Nat Commun. 2021;12:2558.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Pavone P, Polizzi A, Marino SD, Corsello G, Falsaperla R, Marino S, et al. West syndrome: a comprehensive review. Neurol Sci. 2020;41:3547–62.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Battle DJ, Lau CK, Wan L, Deng H, Lotti F, Dreyfuss G. The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell. 2006;23:273–9.

    Article  PubMed  CAS  Google Scholar 

  8. GTEx Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  PubMed Central  Google Scholar 

  9. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  PubMed  Google Scholar 

  10. Gubitz AK, Mourelatos Z, Abel L, Rappsilber J, Mann M, Dreyfuss G. Gemin5, a novel WD repeat protein component of the SMN complex that binds Sm proteins. J Biol Chem. 2002;277:5631–6.

    Article  PubMed  CAS  Google Scholar 

  11. Battle DJ, Kasim M, Wang J, Dreyfuss G. SMN-independent subunits of the SMN complex. Identification of a small nuclear ribonucleoprotein assembly intermediate. J Biol Chem. 2007;282:27953–9.

    Article  PubMed  CAS  Google Scholar 

  12. Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.

    Article  PubMed  CAS  Google Scholar 

  13. Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding proteins. Nat Rev Genet. 2014;15:829–45.

    Article  PubMed  CAS  Google Scholar 

  14. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gebauer F, Schwarzl T, Valcárcel J, Hentze MW. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185–98.

    Article  PubMed  CAS  Google Scholar 

  16. Castello A, Fischer B, Hentze MW, Preiss T. RNA-binding proteins in Mendelian disease. Trends Genet. 2013;29:318–27.

    Article  PubMed  CAS  Google Scholar 

  17. Tang X, Bharath SR, Piao S, Tan VQ, Bowler MW, Song H. Structural basis for specific recognition of pre-snRNA by Gemin5. Cell Res. 2016;26:1353–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Fernandez-Chamorro J, Piñeiro D, Gordon JM, Ramajo J, Francisco-Velilla R, Macias MJ, et al. Identification of novel non-canonical RNA-binding sites in Gemin5 involved in internal initiation of translation. Nucleic Acids Res. 2014;42:5742–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Francisco-Velilla R, Embarc-Buh A, Del Caño-Ochoa F, Abellan S, Vilar M, Alvarez S, et al. Functional and structural deficiencies of Gemin5 variants associated with neurological disorders. Life Sci Alliance. 2022;5:e202201403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Moreno-Morcillo M, Francisco-Velilla R, Embarc-Buh A, Fernández-Chamorro J, Ramón-Maiques S, Martinez-Salas E. Structural basis for the dimerization of Gemin5 and its role in protein recruitment and translation control. Nucleic Acids Res. 2020;48:788–801.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We want to thank the patients who contributed samples to the study. We acknowledge the support from STI 2030-Major Projects and the Zhejiang Provincial Natural Science Foundation of China.

Funding

This study was funded by STI 2030-Major Projects under Grant No. 2021ZD0201700 and the Zhejiang Provincial Natural Science Foundation of China under Grant No. LGF19H090020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanzhao Guo or Zhefeng Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The studies involving human participants were reviewed and Approved by the Ethics Committee of Children’s Hospital, Zhejiang University School of Medicine (2021-IRB-161). The participants’ legal guardians/next of kin provided written informed consent to participate in this study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guo, Y., Xu, L. et al. Novel compound heterozygous mutation and phenotype in the tetratricopeptide repeat-like domain of the GEMIN5 gene in two Chinese families. J Hum Genet 68, 789–792 (2023). https://doi.org/10.1038/s10038-023-01184-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01184-8

Search

Quick links