Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The composition dynamics of transposable elements in human blastocysts

Abstract

Transposable elements (TEs) are mobile DNA sequences that can replicate themselves and play significant roles in embryo development and chromosomal structure remodeling. In this study, we investigated the variation of TEs in blastocysts with different parental genetic backgrounds. We analyzed the proportions of 1137 TEs subfamilies from six classes at the DNA level using Bowtie2 and PopoolationTE2 in 196 blastocysts with abnormal parental chromosomal diseases. Our findings revealed that the parental karyotype was the dominant factor influencing TEs frequencies. Out of the 1116 subfamilies, different frequencies were observed in blastocysts with varying parental karyotypes. The development stage of blastocysts was the second most crucial factor influencing TEs proportions. A total of 614 subfamilies exhibited different proportions at distinct blastocyst stages. Notably, subfamily members belonging to the Alu family showed a high proportion at stage 6, while those from the LINE class exhibited a high proportion at stage 3 and a low proportion at stage 6. Moreover, the proportions of some TEs subfamilies also varied depending on blastocyst karyotype, inner cell mass status, and outer trophectoderm status. We found that 48 subfamilies displayed different proportions between balanced and unbalanced blastocysts. Additionally, 19 subfamilies demonstrated varying proportions among different inner cell mass scores, and 43 subfamilies exhibited different proportions among outer trophectoderm scores. This study suggests that the composition of TEs subfamilies may be influenced by various factors and undergoes dynamic modulation during embryo development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The raw sequence data reported in this paper have been deposited in the Genome Sequence Archive in National Genomics Data Center, China National Center for Bioinformation/Beijing Institute of Genomics, Chinese Academy of Sciences (GSA-Human: HRA003662) that are publicly accessible at https://ngdc.cncb.ac.cn/gsa-human.

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.

    Article  CAS  PubMed  Google Scholar 

  2. Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5:103–7.

    Article  CAS  PubMed  Google Scholar 

  3. Seberg O, Petersen G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat Rev Genet. 2009;10:276.

    Article  CAS  PubMed  Google Scholar 

  4. Kapitonov VV, Jurka J. Rolling-circle transposons in eukaryotes. Proc Natl Acad Sci USA. 2001;98:8714–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10:691–703.

    Article  CAS  PubMed Central  Google Scholar 

  6. Hsu PS, Yu SH, Tsai YT, Chang JY, Tsai LK, Ye CH, et al. More than causing (epi)genomic instability: emerging physiological implications of transposable element modulation. J Biomed Sci. 2021;28:58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. RN Platt 2nd, Vandewege MW, Ray DA. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res. 2018;26:25–43.

    Article  Google Scholar 

  8. Feschotte C. Transposable elements and the evolution of regulatory networks. Nat Rev Genet. 2008;9:397–405.

    Article  CAS  PubMed Central  Google Scholar 

  9. Surm JM, Moran Y. Transposons Increase Transcriptional Complexity: The Good Parasite? Trends Genet. 2021;37:606–7.

    Article  CAS  Google Scholar 

  10. Wu J, Xu J, Liu B, Yao G, Wang P, Lin Z, et al. Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature. 2018;557:256–60.

    Article  CAS  PubMed  Google Scholar 

  11. Gao L, Wu K, Liu Z, Yao X, Yuan S, Tao W, et al. Chromatin Accessibility Landscape in Human Early Embryos and Its Association with Evolution. Cell. 2018;173:248–59.

    Article  CAS  PubMed  Google Scholar 

  12. Liu L, Leng L, Liu C, Lu C, Yuan Y, Wu L, et al. An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos. Nat Commun. 2019;10:364.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Goke J, Lu X, Chan YS, Ng HH, Ly LH, Sachs F, et al. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell. 2015;16:135–41.

    Article  CAS  PubMed  Google Scholar 

  14. Saksouk N, Simboeck E, Dejardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin. 2015;8:3.

    Article  CAS  PubMed Central  Google Scholar 

  15. Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol. 2014;15:723–34.

    Article  CAS  PubMed  Google Scholar 

  16. Martin C, Beaujean N, Brochard V, Audouard C, Zink D, Debey P. Genome restructuring in mouse embryos during reprogramming and early development. Dev Biol. 2006;292:317–32.

    Article  CAS  PubMed  Google Scholar 

  17. Ge SX. Exploratory bioinformatics investigation reveals importance of “junk” DNA in early embryo development. BMC Genomics. 2017;18:200.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yuan P, Zheng L, Ou S, Zhao H, Li R, Luo H, et al. Evaluation of chromosomal abnormalities from preimplantation genetic testing to the reproductive outcomes: a comparison between three different structural rearrangements based on next-generation sequencing. J Assist Reprod Genet. 2021;38:709–18.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gardner DK and Schoolcraft WB In vitro culture of human blastocysts. In: Jansen R and Mortimer D, editors. Toward Reproductive Certainty: Fertility and Genetics Beyond 1999. London: Parthenon Publishing; 1999. p.378–88.

  20. Telenius H, Carter NP, Bebb CE, Nordenskjöld M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13:718–25.

    Article  CAS  Google Scholar 

  21. Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kofler R, Gómez-Sánchez D, Schlötterer C. PoPoolationTE2: Comparative Population Genomics of Transposable Elements Using Pool-Seq. Mol Biol Evol. 2016;33:2759–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

    Article  PubMed Central  Google Scholar 

  24. Kazazian HHJ, Moran JV. Mobile DNA in Health and Disease. N Engl J Med. 2017;377:361–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kazazian HHJ, Moran JV. The impact of L1 retrotransposons on the human genome. Nat Genet. 1998;19:19–24.

    Article  CAS  PubMed  Google Scholar 

  26. Richardson SR, Morell S, Faulkner GJ. L1 retrotransposons and somatic mosaicism in the brain. Annu Rev Genet. 2014;48:1–27.

    Article  CAS  PubMed  Google Scholar 

  27. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA. 2003;100:5280–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kazazian HHJ, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 1988;332:164–6.

    Article  CAS  PubMed  Google Scholar 

  29. Jachowicz JW, Bing X, Pontabry J, Boskovic A, Rando OJ, Torres-Padilla ME. LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet. 2017;49:1502–10.

    Article  CAS  PubMed  Google Scholar 

  30. Vitullo P, Sciamanna I, Baiocchi M, Sinibaldi-Vallebona P, Spadafora C. LINE-1 retrotransposon copies are amplified during murine early embryo development. Mol Reprod Dev. 2012;79:118–27.

    Article  CAS  Google Scholar 

  31. Yandim C, Karakulah G. Expression dynamics of repetitive DNA in early human embryonic development. BMC Genomics. 2019;20:439.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Del Re B, Giorgi G. Long INterspersed element-1 mobility as a sensor of environmental stresses. Environ Mol Mutagen. 2020;61:465–93.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32170641 and 81872295 to YG), Guangdong Science and Technology Department (2021A1515011183 to YG and 2020B1212060018).

Author information

Authors and Affiliations

Authors

Contributions

JL and YG designed the project. JL and PY collected and arranged the sequencing and clinical data. JL, GM, YL, QZ and YG analyzed the data. JL, PY and YG wrote the manuscript. WW and YG supervised the study and edited the manuscript.

Corresponding authors

Correspondence to Wenjun Wang or Yabin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yuan, P., Ma, G. et al. The composition dynamics of transposable elements in human blastocysts. J Hum Genet 68, 681–688 (2023). https://doi.org/10.1038/s10038-023-01169-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-023-01169-7

Search

Quick links