Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients

Abstract

Focal segmental glomerulosclerosis (FSGS) is a histological lesion with many causes, including inherited genetic defects, with significant proteinuria being the predominant clinical finding at presentation. FSGS is considered as a podocyte disease due to the fact that in the majority of patients with FSGS, the lesion results from defects in the podocyte structure. However, FSGS does not result exclusively from podocyte-associated genes. In this study, we used a genetic approach based on targeted next-generation sequencing (NGS) of 242 genes to identify the genetic cause of FSGS in seven Tunisian families. The sequencing results revealed the presence of eight distinct mutations including seven newly discovered ones: the c.538G>A (p.V180M) in NPHS2, c.5186G>A (p.R1729Q) in PLCE1 and c.232A>C (p.I78L) in PAX2 and five novel mutations in COL4A3 and COL4A4 genes. Four mutations (c.209G>A (p.G70D), c.725G>A (p.G242E), c.2225G>A (p.G742E), and c. 1681_1698del) were detected in COL4A3 gene and one mutation (c.1424G>A (p.G475D)) was found in COL4A4. In summary, NGS of a targeted gene panel is an ideal approach for the genetic testing of FSGS with multiple possible underlying etiologies. We have demonstrated that not only podocyte genes but also COL4A3/4 mutations should be considered in patients with FSGS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Preston R, Stuart HM, Lennon R. Genetic testing in steroid-resistant nephrotic syndrome: why, who, when and how? Ped Nephrol. 2019;34:195–210.

    Article  Google Scholar 

  2. McCarthy HJ, Agnieszka B, Matt W, Milos O, Larissa K, Shivaram H, et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2013;8:637–48.

    Article  CAS  Google Scholar 

  3. Xie J, Chen N. Primary glomerulonephritis in mainland china: an overview. Contrib Nephrol. 2013;181:1–11.

    Article  Google Scholar 

  4. Diouf B, Ka EF, Niang A, Mbengue M, Ka MM, Diouf ML, et al. Analysis of 115 kidney biopsies performed in Dakar (Senegal). Dakar Med. 2001;46:51–3.

    CAS  PubMed  Google Scholar 

  5. Arogundade F. Kidney transplantation in a low-resource setting: Nigeria experience. Kidney Int Suppl. 2013;3:241–45.

    Article  Google Scholar 

  6. D’Agati VD, Fogo AB, Bruijn JA, Charles Jennette J. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am J Kidney Dis. 2004;43:368–82.

    Article  Google Scholar 

  7. D’Agati VD, Kaskel FJ, Falk RJ. Focal segmental glomerulosclerosis. N. Engl J Med. 2011;365:2398–411.

    Article  Google Scholar 

  8. Lepori N, Zand L, Sethi S, Fernandez-Juarez G, Fervenza FC. Clinical and pathological phenotype of genetic causes of focal segmental glomerulosclerosis in adults. Clin Kidney J. 2018;11:179–90.

    Article  CAS  Google Scholar 

  9. Maggie Chen Y, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol. 2015;16:101.

    Article  Google Scholar 

  10. Akchurin O, Reidy KJ. Genetic causes of proteinuria and nephrotic syndrome: Impact on podocyte pathobiology. Ped Nephrol. 2015;30:221–33.

    Article  Google Scholar 

  11. Bullich G, Trujillano D, Santín S, Ossowski S, Mendizábal S, Fraga G, et al. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur J Hum Genet. 2015;23:1192–99.

    Article  CAS  Google Scholar 

  12. Weins A, Kenlan P, Herbert S, Le TC, Villegas I, Kaplan BS, et al. Mutational and biological analysis of α-actinin-4 in focal segmental glomerulosclerosis. J Am Soc Nephrol. 2005;16:3694–3701.

    Article  CAS  Google Scholar 

  13. Gigante M, Pontrelli P, Montemurno E, Roca L, Aucella F, Penza R, et al. CD2AP mutations are associated with sporadic nephrotic syndrome and focal segmental glomerulosclerosis (FSGS). Nephrol Dial Transplant. 2009;24:1858–64.

    Article  CAS  Google Scholar 

  14. Brown EJ, Schlöndorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, et al. Mutations in the formin protein INF2 cause focal segmental glomerulosclerosis. Nat Genet. 2010;42:72–6.

    Article  CAS  Google Scholar 

  15. Xie J, Hao X, Azeloglu EU, Ren H, Wang Z, Ma J, et al. Novel mutations in the inverted formin 2 gene of chinese families contribute to focal segmental glomerulosclerosis. Kidney Int. 2015;88:593–604.

    Article  CAS  Google Scholar 

  16. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet. 2000;24:349–54.

    Article  CAS  Google Scholar 

  17. Weber S, Gribouval O, Esquivel EL, Morinière V, Tête M, Legendre CH, et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 2004;66:571–79.

    Article  CAS  Google Scholar 

  18. Ismaili KH, Pawtowski A, Boyer O, Martin Wissing K, Janssen F, Hall M. Genetic forms of nephrotic syndrome: a single-center experience in brussel. Ped Nephrol. 2009;24:287–94.

    Article  Google Scholar 

  19. Benhaj Mbarek I, Abroug S, Omezzine A, Pawtowski A, Claire Gubler M, Bouslama A, et al. Novel mutations in steroid-resistant nephrotic syndrome diagnosed in tunisian children. Ped Nephrol. 2011;26:241–49.

    Article  Google Scholar 

  20. Roselli S, Gribouval O, Boute N, Sich M, Benessy F, Attié F, et al. Podocin localizes in the kidney to the slit diaphragm area. Am J Pathol. 2002;160:131–39.

    Article  CAS  Google Scholar 

  21. Antignac C. Molecular basis of steroid-resistant nephrotic syndrome. Nefrologia. 2005;25:25–8.

    PubMed  Google Scholar 

  22. Bouchireb K, Boyer O, Gribouval O, Nevo F, Huynh-Cong E, Morinière V, et al. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hu Mutat. 2014;35:178–86.

    Article  CAS  Google Scholar 

  23. Sprangers B, Meijers B, Appel G. FSGS: diagnosis and diagnostic work-up. Biomed Res Int. 2016;2016:4632768.

    Article  Google Scholar 

  24. Santín S, Bullich G, Tazón-Vega B, García-Maset R, Giménez I, Silva I, et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin J Am Soc Nephrol. 2011;6:1139–48.

    Article  Google Scholar 

  25. Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CHN, Seelow D, Nürnberg G, et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat Genet. 2006;38:1397–405.

    Article  CAS  Google Scholar 

  26. Boyer O, Benoit G, Gribouval O, Nevo F, Tête MJ, Dantal J, et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J Am Soc Nephrol. 2011;22:239–45.

    Article  CAS  Google Scholar 

  27. Barua M, Stellacci E, Stella L, Weins A, Genovese G, Muto V, et al. Mutations in PAX2 associate with adult-onset FSGS. J Am Soc Nephrol. 2014;25:1942–53.

    Article  CAS  Google Scholar 

  28. Pochet JM, Bobrie G, Landais P, Goldfarb B, Grünfeld JP. Renal prognosis in Alport’s and related syndromes: influence of the mode of inheritance. Nephrol Dial Transplant. 1989;4:1016–21.

    CAS  PubMed  Google Scholar 

  29. Longo I, Scala E, Mari F, Caselli R, Pescucci R, Antonietta Mencarelli M, et al. Autosomal recessive alport syndrome: an in-depth clinical and molecular analysis of five families. Nephrol Dial Transplant. 2006;21:665–71.

    Article  CAS  Google Scholar 

  30. Abrahamson DR, Hudson BG, Stroganova L, Borza DB, St John PL. Cellular origins of type IV collagen networks in developing glomeruli. J Am Soc Nephrol. 2009;20:1471–79.

    Article  CAS  Google Scholar 

  31. Groopman EE, Marasa M, Cameron-Christie S, Petrovski S, Aggarwal VS, Milo-Rasouly, et al. Diagnostic utility of exome sequencing for kidney disease. N. Engl J Med. 2019;380:42–51.

    Article  Google Scholar 

  32. Voskarides K, Damianou L, Neocleous V, Zouvani I, Christodoulidou S, Hadjiconstantinou V, et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J Am Soc Nephrol. 2007;18:3004–16.

    Article  CAS  Google Scholar 

  33. Pierides A, Voskarides K, Athanasiou Y, Ioannou K, Damianou L, Arsali M, et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney disease from focal segmental glomerulosclerosis. Nephrol Dial Transplant. 2009;24:2721–29.

    Article  CAS  Google Scholar 

  34. Gibson J, Gilbert RD, Bunyan DJ, Angus EM, Fowler DJ, Ennis S. Exome analysis resolves differential diagnosis of familial kidney disease and uncovers a potential confounding variant. Genet Res. 2013;95:165–73.

    Article  CAS  Google Scholar 

  35. Adam J, Connor THMF, Wood K, Lewis D, Naik R, Gale DP, et al. Genetic testing can resolve diagnostic confusion in Alport syndrome. Clin Kidney J. 2014;7:197–200.

    Article  CAS  Google Scholar 

  36. Chatterjee R, Hoffman M, Cliften P, Seshan S, Liapis H, Jain H. Targeted exome sequencing integrated with clinicopathological information reveals novel and rare mutations in atypical, suspected and unknown cases of alport syndrome or proteinuria. PLoS ONE. 2013;8:76360.

    Article  Google Scholar 

  37. Yoshida H. ER stress and diseases. FEBS J. 2007;274:630–58.

    Article  CAS  Google Scholar 

  38. Rajpar MH, McDermott B, Kung L, Eardley R, Knowles L, Heeran M, et al. Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet. 2009;5:1000691.

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the patients and their families for their invaluable cooperation and for providing the blood samples. This research was funded by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawssan Ammar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ammar, S., Kanoun, H., Kammoun, K. et al. Next-generation sequencing in patients with familial FSGS: first report of collagen gene mutations in Tunisian patients. J Hum Genet 66, 795–803 (2021). https://doi.org/10.1038/s10038-021-00912-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00912-2

This article is cited by

Search

Quick links