Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Characterization of early postzygotic somatic mutations through multi-organ analysis

Abstract

Mosaicisms caused by postzygotic mutational events are of increasing interest because of their potential association with various human diseases. Postzygotic somatic mutations have not been well characterized however in terms of their developmental lineage in humans. We conducted whole-genome sequencing (WGS) and targeted deep sequencing in 15 organs across three developmental lineages from a single male fetus with polycystic kidney disease (PKD) of 21 weeks gestational age. This fetus had no detectable neurological abnormalities at autopsy but germline mutations in the PKHD1 gene were identified that may have been associated with the PKD. Eight early embryonic mosaic variants with no alteration of protein function were detected. These variants were thought to have occurred at the two or four cell stages after fertilization with a mutational pattern involving frequent C>T and T>C transitions. In our current analyses, no tendency toward organ-specific mutation occurrences was found as the eight variants were detected in all 15 organs. However different allele fractions of these variants were found in different organs, suggesting a tissue-specific asymmetric growth of cells that reflected the developmental germ layer of each organ. This indicated that somatic mutation occurrences, even in early embryogenesis, can affect specific organ development or disease. Our current analyses demonstrate that multi-organ analysis is helpful for understanding genomic mosaicism. Our results also provide insights into the biological role of mosaicism in embryonic development and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Biesecker LG, Spinner NB. A genomic view of mosaicism and human disease. Nat Rev Genet. 2013;14:307–20.

    Article  CAS  Google Scholar 

  2. Ju YS, Martincorena I, Gerstung M, Petljak M, Alexandrov LB, Rahbari R, et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature. 2017;543:714–8.

    Article  CAS  Google Scholar 

  3. Rohrback S, Siddoway B, Liu CS, Chun J. Genomic mosaicism in the developing and adult brain. Dev Neurobiol. 2018;78:1026–48.

    Article  Google Scholar 

  4. Dou Y, Gold HD, Luquette LJ, Park PJ. Detecting somatic mutations in normal cells. Trends Genet. 2018;34:545–57.

    Article  CAS  Google Scholar 

  5. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol. 2013;31:213–9.

    Article  CAS  Google Scholar 

  6. Kim JE, Chun SM, Hong YS, Kim KP, Kim SY, Kim J, et al. Mutation burden and I index for detection of microsatellite instability in colorectal cancer by targeted next-generation sequencing. J Mol Diagn. 2019;21:241–50.

    Article  CAS  Google Scholar 

  7. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  Google Scholar 

  8. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  Google Scholar 

  9. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011;21:974–84.

    Article  CAS  Google Scholar 

  10. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7.20.

    PubMed  Google Scholar 

  11. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  Google Scholar 

  12. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22:568–76.

    Article  CAS  Google Scholar 

  13. Huang AY, Zhang Z, Ye AY, Dou Y, Yan L, Yang X, et al. MosaicHunter: accurate detection of postzygotic single-nucleotide mosaicism through next-generation sequencing of unpaired, trio, and paired samples. Nucleic Acids Res. 2017;45:e76.

    Article  CAS  Google Scholar 

  14. DeLeonardis K, Hogan L, Cannistra SA, Rangachari D, Tung N. When should tumor genomic profiling prompt consideration of germline testing? J Oncol Pract. 2019;15:465–73.

    Article  Google Scholar 

  15. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    Article  CAS  Google Scholar 

  16. Shuster S, Keunen J, Shannon P, Watkins N, Chong K, Chitayat D. Prenatal detection of isolated bilateral hyperechogenic kidneys: etiologies and outcomes. Prenat Diagn. 2019;39:693–700.

    Article  CAS  Google Scholar 

  17. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  Google Scholar 

  18. Oh JH, Sung CO. Comprehensive characteristics of somatic mutations in the normal tissues of patients with cancer and existence of somatic mutant clones linked to cancer development. J Med Genet. 2020;jmedgenet-2020-106905. https://doi.org/10.1136/jmedgenet-2020-106905.

  19. Yizhak K, Aguet F, Kim J, Hess JM, Kübler K, Grimsby J, et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science. 2019;364:eaaw0726.

    Article  CAS  Google Scholar 

  20. D’Gama AM, Walsh CA. Somatic mosaicism and neurodevelopmental disease. Nat Neurosci. 2018;21:1504–14.

    Article  Google Scholar 

  21. Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science. 2013;341:1237758.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRFK) (NRF-2019R1A2C1084460), and the Bio and Medical Technology Development Program of the NRFK (NRF-2017M3A9G5061671 and NRF-2019M3E5D4066900) of the Korean government.

Author information

Authors and Affiliations

Authors

Contributions

COS and SMC designed the study. HJL and COS analyzed the data and interpreted the results. HJL and COS designed and generated all of the figures. ENK, SMC, JYL, and COS collected and generated data. SMC, JHK, JHO, WKK, EJC, and JL contributed to data analysis and interpretation. COS, HJL, ENK, and SMC wrote the paper.

Corresponding authors

Correspondence to Sung-Min Chun or Chang Ohk Sung.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Kim, E.N., Lee, JY. et al. Characterization of early postzygotic somatic mutations through multi-organ analysis. J Hum Genet 66, 777–784 (2021). https://doi.org/10.1038/s10038-021-00908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00908-y

This article is cited by

Search

Quick links