Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Further defining the clinical and molecular spectrum of acromesomelic dysplasia type maroteaux: a Turkish tertiary center experience

Subjects

Abstract

Acromesomelic dysplasia type Maroteaux (AMDM, OMIM #602875) is an autosomal recessive disorder characterized by severe short stature, shortened middle and distal segments of the limbs, redundant skin of fingers, radial head subluxation or dislocation, large great toes and cranium, and normal intelligence. Only the skeletal system appears to be consistently affected. AMDM is caused by biallelic loss-of-function variants in the natriuretic peptide receptor B (NPRB or NPR2, OMIM #108961) which is involved in endochondral ossification and longitudinal growth of limbs and vertebrae. In this study, we investigated 26 AMDM patients from 22 unrelated families and revealed their genetic etiology in 20 families, via Sanger sequencing or exome sequencing. A total of 22 distinct variants in NPR2 (14 missense, 5 nonsense, 2 intronic, and 1 one-amino acid deletion) were detected, among which 15 were novel. They were in homozygous states in 19 patients and in compound heterozygous states in four patients. Parents with heterozygous NPR2 variants were significantly shorter than the control. Extra-skeletal abnormalities, including global developmental delay/intellectual disability, nephrolithiasis, renal cyst, and oligodontia were noted in the patient cohort. The high parental consanguinity rate might have contributed to these findings, probably associated with other gene variants. This study represents the largest cohort of AMDM from Turkey and regional countries and further expands the molecular and clinical spectrum of AMDM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A. 2019;179:2393–419.

    Article  PubMed  Google Scholar 

  2. Maroteaux P, Martinelli B, Campailla E. Acromesomelic dwarfism. Presse Med. 1971;79:1839–42.

    CAS  PubMed  Google Scholar 

  3. Jurgen W Spranger PWB, Christine Hal, Gen Nishimura, Andrea Superti-Furga, Sheila Unger. Bone dysplasias an atlas of genetic disorders of skeletal development, Fourth Edition. New York: Oxford University Press; 2018.

  4. Bartels CF, Bukulmez H, Padayatti P, Rhee DK, van Ravenswaaij-Arts C, Pauli RM, et al. Mutations in the transmembrane natriuretic peptide receptor NPR-B impair skeletal growth and cause acromesomelic dysplasia, type Maroteaux. Am J Hum Genet. 2004;75:27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Potter LR, Hunter T. Identification and characterization of the phosphorylation sites of the guanylyl cyclase-linked natriuretic peptide receptors A and B. Methods. 1999;19:506–20.

    Article  CAS  PubMed  Google Scholar 

  6. Olney RC. C-type natriuretic peptide in growth: a new paradigm. Growth Horm IGF Res. 2006;16:S6–14.

    Article  CAS  PubMed  Google Scholar 

  7. Yasoda A, Nakao K. Translational research of C-type natriuretic peptide (CNP) into skeletal dysplasias. Endocr J. 2010;57:659–66.

    Article  CAS  PubMed  Google Scholar 

  8. Hume AN, Buttgereit J, Al-Awadhi AM, Al-Suwaidi SS, John A, Bader M, et al. Defective cellular trafficking of missense NPR-B mutants is the major mechanism underlying acromesomelic dysplasia-type Maroteaux. Hum Mol Genet. 2009;18:267–77.

    Article  CAS  PubMed  Google Scholar 

  9. Khan S, Ali RH, Abbasi S, Nawaz M, Muhammad N, Ahmad W. Novel mutations in natriuretic peptide receptor-2 gene underlie acromesomelic dysplasia, type maroteaux. BMC Med Genet. 2012;13:44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava P, Tuteja M, Dalal A, Mandal K, SRP. Novel mutations in the transmembrane natriuretic peptide receptor NPR-B gene in four Indian families with acromesomelic dysplasia, type Maroteaux. J Genet. 2016;95:905–9.

    Article  CAS  PubMed  Google Scholar 

  11. Vera Saez-Benito MC, Izquierdo-Alvarez S, de Arriba Munoz A. New pathogenic variant in the NPR2 gene: etiology of low size, macrocephaly and bone dysplasia in a male with acromesomelic dysplasia Maroteaux-type. Med Clin. 2017;149:553–4.

    Article  Google Scholar 

  12. Irfanullah, Zeb A, Shinwari N, Shah K, Gilani SZT, Khan S, et al. Molecular and in silico analyses validates pathogenicity of homozygous mutations in the NPR2 gene underlying variable phenotypes of Acromesomelic dysplasia, type Maroteaux. Int J Biochem Cell Biol. 2018;102:76–86.

    Article  CAS  PubMed  Google Scholar 

  13. Lin WD, Wang CH, Tsai FJ. Identification of one novel homozygous mutation in the NPR2 gene in a patient from Taiwan with acromesomelic dysplasia Maroteaux type. Pediatr Neonatol. 2018;59:322–3.

    Article  PubMed  Google Scholar 

  14. Tran TH, Cao MH, Luong LH, Le PT, Vu DC, Ta TD, et al. Acromesomelic dysplasia Maroteaux-type in patients from Vietnam. Am J Med Genet A. 2019;179:1420–2.

    Article  CAS  PubMed  Google Scholar 

  15. Ain NU, Iqbal M, Valta H, Emerling CA, Ahmed S, Makitie O, et al. Novel variants in natriuretic peptide receptor 2 in unrelated patients with acromesomelic dysplasia type Maroteaux. Eur J Med Genet. 2019;62:103554.

    Article  PubMed  Google Scholar 

  16. Wang W, Song MH, Miura K, Fujiwara M, Nawa N, Ohata Y, et al. Acromesomelic dysplasia, type maroteaux caused by novel loss-of-function mutations of the NPR2 gene: three case reports. Am J Med Genet A. 2016;170A:426–34.

    Article  PubMed  Google Scholar 

  17. Irfanullah, Umair M, Khan S, Ahmad W. Homozygous sequence variants in the NPR2 gene underlying Acromesomelic dysplasia Maroteaux type (AMDM) in consanguineous families. Ann Hum Genet. 2015;79:238–44.

    Article  CAS  PubMed  Google Scholar 

  18. Sag SO, Gorukmez O, Topak A, Gorukmez O, Ture M, Sahinturk S, et al. A novel mutation in Npr2 gene in a patient with acromesomelic dysplasia, Maroteaux type. Genet Couns. 2015;26:219–25.

    PubMed  Google Scholar 

  19. Vasques GA, Arnhold IJ, Jorge AA. Role of the natriuretic peptide system in normal growth and growth disorders. Horm Res Paediatr. 2014;82:222–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hachiya R, Ohashi Y, Kamei Y, Suganami T, Mochizuki H, Mitsui N, et al. Intact kinase homology domain of natriuretic peptide receptor-B is essential for skeletal development. J Clin Endocrinol Metab. 2007;92:4009–14.

    Article  CAS  PubMed  Google Scholar 

  21. Banapurmath CR, Patil M, Guruprasad G, Kesaree N. Acromesomelic dysplasia of the Maroteaux type. Indian J Pediatr. 1990;57:803–5.

    Article  CAS  PubMed  Google Scholar 

  22. Mustafa S, Akhtar Z, Latif M, Hassan M, Faisal M, Iqbal F. A novel nonsense mutation in NPR2 gene causing Acromesomelic dysplasia, type Maroteaux in a consanguineous family in Southern Punjab (Pakistan). Genes Genom. 2020;42:847–54.

    Article  CAS  Google Scholar 

  23. Kant SG, Polinkovsky A, Mundlos S, Zabel B, Thomeer RT, Zonderland HM, et al. Acromesomelic dysplasia Maroteaux type maps to human chromosome 9. Am J Hum Genet. 1998;63:155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Olney RC, Bukulmez H, Bartels CF, Prickett TC, Espiner EA, Potter LR, et al. Heterozygous mutations in natriuretic peptide receptor-B (NPR2) are associated with short stature. J Clin Endocrinol Metab. 2006;91:1229–32.

    Article  CAS  PubMed  Google Scholar 

  25. Chou JH, Roumiantsev S, Singh R. PediTools electronic growth chart calculators: applications in clinical care, research, and quality improvement. J Med Internet Res. 2020;22:e16204.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Neyzi O, Bundak R, Gokcay G, Gunoz H, Furman A, Darendeliler F, et al. Reference values for weight, height, head circumference, and body mass index in Turkish children. J Clin Res Pediatr Endocrinol. 2015;7:280–93.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fryar CD, Gu Q, Ogden CL, Flegal KM. Anthropometric reference data for children and adults: United States, 2011–2014. Vital- Health Stat. 2016;3:1–46.

    Google Scholar 

  28. Utine GE, Taskiran EZ, Kosukcu C, Karaosmanoglu B, Guleray N, Dogan OA, et al. HERC1 mutations in idiopathic intellectual disability. Eur J Med Genet. 2017;60:279–83.

    Article  PubMed  Google Scholar 

  29. Haliloglu M, Ozen H, Kocak N, Unsal M. Acromesomelic dysplasia associated with mild lumbar spine stenosis. Eur Radio. 1999;9:103–4.

    Article  CAS  Google Scholar 

  30. Plachy L, Dusatkova P, Maratova K, Petruzelkova L, Zemkova D, Elblova L, et al. NPR2 variants are frequent among children with familiar short stature and respond well to growth hormone therapy. J Clin Endocrinol Metab. 2020;105:e746–52.

    Article  Google Scholar 

  31. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Daniele A, Scala I, Cardillo G, Pennino C, Ungaro C, Sibilio M, et al. Functional and structural characterization of novel mutations and genotype-phenotype correlation in 51 phenylalanine hydroxylase deficient families from Southern Italy. FEBS J. 2009;276:2048–59.

    Article  CAS  PubMed  Google Scholar 

  33. Lenke RR, Levy HL. Maternal phenylketonuria and hyperphenylalaninemia. An international survey of the outcome of untreated and treated pregnancies. N Engl J Med. 1980;303:1202–8.

    Article  CAS  PubMed  Google Scholar 

  34. Stevenson RE, Huntley CC. Congenital malformations in offspring of phenylketonuric mothers. Pediatrics. 1967;40:33–45.

    CAS  PubMed  Google Scholar 

  35. Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev. 2006;27:47–72.

    Article  CAS  PubMed  Google Scholar 

  36. Faivre L, Le Merrer M, Megarbane A, Gilbert B, Mortier G, Cusin V, et al. Exclusion of chromosome 9 helps to identify mild variants of acromesomelic dysplasia Maroteaux type. J Med Genet. 2000;37:52–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tuncbilek E. Clinical outcomes of consanguineous marriages in Turkey. Turk J Pediatr. 2001;43:277–9.

    CAS  PubMed  Google Scholar 

  38. Kurt-Sukur ED, Simsek-Kiper PO, Utine GE, Boduroglu K, Alanay Y. Experience of a skeletal dysplasia registry in Turkey: a five-years retrospective analysis. Am J Med Genet A. 2015;167A:2065–74.

    Article  PubMed  Google Scholar 

  39. Lal D, Neubauer BA, Toliat MR, Altmuller J, Thiele H, Nurnberg P, et al. Increased probability of co-occurrence of two rare diseases in consanguineous families and resolution of a complex phenotype by next generation sequencing. PLoS ONE. 2016;11:e0146040.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Posey JE, Harel T, Liu P, Rosenfeld JA, James RA, Coban Akdemir ZH, et al. Resolution of disease phenotypes resulting from multilocus genomic variation. N Engl J Med. 2017;376:21–31.

    Article  CAS  PubMed  Google Scholar 

  41. Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A, Ito H, et al. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet. 2013;92:927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our patients and their families for their collaboration and participation. We also thank Ebru Bulut for DNA sequencing, sample handling and excellent technical assistance. The study was supported by Hacettepe University Research Projects Management System with Project ID: 14392.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pelin Ozlem Simsek-Kiper.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simsek-Kiper, P.O., Urel-Demir, G., Taskiran, E.Z. et al. Further defining the clinical and molecular spectrum of acromesomelic dysplasia type maroteaux: a Turkish tertiary center experience. J Hum Genet 66, 585–596 (2021). https://doi.org/10.1038/s10038-020-00871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00871-0

Search

Quick links