Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of denosumab in prostate cancer

Abstract

Prostate cancer is known to have a tissue tropism for bone. This tissue tropism coupled with the experience with androgen deprivation therapy (ADT) over the past decade has led to heightened awareness of bone complications. Osteopenia and subsequent skeletal-related events (SREs) are one of the more concerning repercussions of ADT along with cardiovascular sequelae. To combat this decrease in bone mineral density, several agents have been developed for bone protection. The largest experience is with bisphosphonates (BPs), but recently (2011) head to head trials have established the role of monoclonal antibodies, particularly in patients with prostate cancer bone metastasis. For patients initiating ADT, monthly denosumab increased bone mineral density, the time for occurrence of any bone metastasis and time for symptomatic bone metastasis. Denosumab is a fully human monoclonal antibody of the IgG2 subtype that selectively binds and neutralizes receptor activator NF kappa B ligand (RANKL), inhibiting osteoclastogenesis and bone turnover. In vitro binding assays have shown high-affinity binding of denosumab and osteoprotegerin to both soluble and membrane-bound forms of human RANKL. As clinicians may be less familiar with this newer agent, we compiled this review to summarize denosumab's current clinical indications for bone stabilization and mechanism of reduction in tumor burden.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS . Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 2005; 352: 154–164.

    Article  CAS  Google Scholar 

  2. Krupski TL, Smith MR, Lee WC, Pashos CL, Brandman J, Wang Q et al. Natural history of bone complications in men with prostate carcinoma initiating androgen deprivation therapy. Cancer 2004; 101: 541–549.

    Article  Google Scholar 

  3. Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomized, double-blind study. Lancet 2011; 377: 813–822.

    Article  CAS  Google Scholar 

  4. Smith MR, Egerdie B, Hernandez TN, Feldman R, Tammela TL et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med 2009; 361: 745–755.

    Article  CAS  Google Scholar 

  5. Tabrizi MA, Tseng CM, Roskos LK . Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 2006; 11: 81–88.

    Article  CAS  Google Scholar 

  6. Smith MR, Saad F, Coleman R, Shore N, Fizazi K, Tombal B et al. Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet 2012; 379: 39–46.

    Article  CAS  Google Scholar 

  7. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 98: 165–176.

    Article  Google Scholar 

  8. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304–309.

    Article  CAS  Google Scholar 

  9. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R et al. Osteogrotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    Article  CAS  Google Scholar 

  10. Roodman GD . Mechanisms of bone metastasis. N Engl J Med 2004; 350: 1655–1664.

    Article  CAS  Google Scholar 

  11. Morony S, Capparelli C, Sarosi I, Lacey DL, Dunstan CR, Kostenuik PJ . Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 2001; 61: 4432–4436.

    CAS  PubMed  Google Scholar 

  12. Morony S, Capparelli C, Kostenuik PJ, Rattan A, Scully S, Tarpley J et al. Osteoprotegerin prevents bone destructionin athymic and syngeneic models of experimental tumor metastasis to bone. Cancer 2000; 88: 3107.

    Google Scholar 

  13. Stopeck A, Martin M, Ritchie D et al. Effect of denosumab versus zoledronic acid treatment in patients with breast cancer and bone metastases: results from the extended blinded treatment phase. Paper presented at: 33rd Annual CTRC AACR San Antonio Breast Cancer Symposium, 8 December 2010 to 12 December 2010; San Antonio, TX. Abstract P6-14-01.

  14. Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol 2011; 29: 1125–1132.

    Article  CAS  Google Scholar 

  15. Body JJ, Facon T, Coleman RE, Lipton A, Geurs F, Fan M et al. A study of the biological receptor activator of nuclear factor-kappaB ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 2006; 12: 1221–1228.

    Article  CAS  Google Scholar 

  16. Fiazi K, Lipton A, Mariette X, Body JJ, Rahim Y, Gralow JR et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. J Clin Oncol 2009; 27: 1564–1571.

    Article  Google Scholar 

  17. Lipton A, Steger GG, Figueroa J, Alvarado C, Solal-Celigny P, Body JJ et al. Randomized active-controlled phase II study of denosumab efficacy and safety in patients with breast cancer-related bone metastases. J Clin Oncol 2007; 25: 4431–4437.

    Article  CAS  Google Scholar 

  18. Armstrong AP, Miller RE, Jones JC, Zhang J, Keller ET, Dougall WC . RANKL acts directly on RANK-expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate 2008; 68: 92–104.

    Article  CAS  Google Scholar 

  19. Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006; 440: 692–696.

    Article  CAS  Google Scholar 

  20. Chen G, Sircar K, Apirkian A, Potti A, Goltzman D, Rabbani SA . Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer 2006; 107: 289–298.

    Article  CAS  Google Scholar 

  21. Jung K, Stephan C, Semjonow A, Lein M, Schnorr D, Loening SA . Serum osteoprotegerin and receptor activator of nuclear factor-kappa B ligand as indicators of distrubed osteoclastogenesis in patients with prostate cancer. J Urol 2003; 170 (6 Part 1): 2302–2305.

    Article  Google Scholar 

  22. Eaton CL, Wells JM, Holen I, Croucher PI, Hamdy FC . Serum osteoprotegerin (OPG) levels are associated with disease progression and response to androgen ablation in patients with prostate cancer. Prostate 2004; 59: 304–310.

    Article  CAS  Google Scholar 

  23. Brown JM, Vessela RL, Kostenuik PJ, Dunstan CR, Lange PH, Corey E . Serum osteoprotegerin levels are increased in patients with advanced prostate cancer. Clin Cancer Res 2001; 7: 2977–2983.

    CAS  PubMed  Google Scholar 

  24. Jung K, Lein M, Stephan C, Von Hosslin K, Semjonow A, Sinha P et al. Comparison of 10 serium bone turnover markers in prostate carcinoma patients with bone metastatic spread: diagnostic and prognostic implications. Int J Cancer 2004; 111: 783–791.

    Article  CAS  Google Scholar 

  25. Pierroz DD, Bonnet N, Baldock PA, Ominsky MS, Stolina M, Kostenuik PJ et al. Are osteoclasts needed for the bone anabolic response to parathyroid hormone? A study of intermittent parathyroid hormone with denosumab or alendronate in knock-in mice expressing humanized RANKL. J Biol Chem 2010; 285: 28164–28173.

    Article  CAS  Google Scholar 

  26. Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 2008; 25: 119–129.

    Article  CAS  Google Scholar 

  27. Virk MS, Alaee F, Petrigliano FA, Sugiyama O, Chatziioannou AF et al. Combined inhibition of the BMP pathway and the RANK/RANKL axis in a mixed lytic/blastic prostate cancer lesion. Bone 2011; 48: 578–587.

    Article  CAS  Google Scholar 

  28. Mori K, Le Goff B, Charrier C, Battaglia S, Heymann D, Redini F . DU145 human prostate cancer cells express functional receptor activator of NFkappaB: new insights in the prostate cancer bone metastasis process. Bone 2007; 40: 981–990.

    Article  CAS  Google Scholar 

  29. Tometsko M, Armstrong A, Miller R, Jones J, Chaisson M, Branstetter D et al. RANK ligand directly induces osteoclastogenic, angiogenic, chemoattractive and invasive factors on RANK-espressing human cancer cells MDA-MG-231 and PC3. Presented at: The 25th Annual Meeting of the American Soceity for Bone and Mineral Research; 1 October 2004 to 5 october 2004; Seattle, Wash. Abstract 1095.

  30. Thomas RJ, Guise TA, Yin JJ, Elliott J, Horwood NJ, Martin TJ et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology 1999; 140: 4451–4458.

    Article  CAS  Google Scholar 

  31. Chaisson ML, Branstetter DG, Derry JM, Armstrong AP, Tometsko ME et al. Osteoclast differentiation is imparied in the absence of inhibitor of kappa B kinase alpha. J Biol Chem 2004; 279: 54841–54848.

    Article  CAS  Google Scholar 

  32. Fernandez-Valdivia R, Mukherjee A, Ying Y, Li J, Paquet M, Demayo FJ et al. The RANKL signaling axis is sufficient to elicit ductal side-branching and alveologenesis in the mammary gland of the virgin mouse. Dev Biol 2009; 328: 127–139.

    Article  CAS  Google Scholar 

  33. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 2010; 468: 103–107.

    Article  CAS  Google Scholar 

  34. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM et al. Tumour-infiltrating regulator T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 2011; 470: 548–553.

    Article  CAS  Google Scholar 

  35. Miller RE, Roudier M, Jones J, Armstrong A, Canon J, Dougall WC . RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther 2008; 7: 2160–2169.

    Article  CAS  Google Scholar 

  36. Boyle WJ, Simonet WS, Lacey DL . Osteoclast differentiation and activation. Nature 2003; 423: 337–342.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T L Krupski.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helo, S., Manger, J. & Krupski, T. Role of denosumab in prostate cancer. Prostate Cancer Prostatic Dis 15, 231–236 (2012). https://doi.org/10.1038/pcan.2012.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2012.2

Keywords

Search

Quick links