Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2

Abstract

Taxane-based radiochemotherapy is a central treatment option for various cancer entities in locally advanced stages. The therapeutic synergism of this combined modality approach due to taxane-mediated radiosensitization of cancer cells is well-known. However, the underlying molecular mechanisms remain largely elusive, and mechanism-derived predictive markers of taxane-based radiochemotherapy are currently not available. Here, we show that clinically relevant doses of Paclitaxel, the prototype taxane, stimulate a tripolar mode of mitosis leading to chromosomal missegregation and aneuploidization rather than interfering with cell cycle progression. This distinct mitotic phenotype was interlinked with Paclitaxel-mediated radiosensitization via overexpression of mitotic Aurora kinase A (AURKA) and its cofactor TPX2 whose knockdown rescued the bipolar mode of cell division and largely attenuated the radiosensitizing effects of Paclitaxel. In the cancer genome atlas (TCGA) lung adenocarcinoma cohort, high expression levels of AURKA and TPX2 were associated with specifically improved overall survival upon taxane-based radiochemotherapy, but not in case of non-taxane-based radiochemotherapy, chemo- or radiotherapy only. Thus, our data provide insights into Paclitaxel-mediated radiosensitization on a mechanistic and molecular level and identify AURKA and TPX2 as the first potential mechanism-based, predictive markers of taxane-based radiochemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Huber RM, Flentje M, Schmidt M, Pollinger B, Gosse H, Willner J et al. Simultaneous chemoradiotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small-cell lung cancer: study CTRT99/97 by the Bronchial Carcinoma Therapy Group. J clin oncol 2006; 24: 4397–4404.

    Article  CAS  Google Scholar 

  2. Janssen A, Medema RH . Mitosis as an anti-cancer target. Oncogene 2011; 30: 2799–2809.

    Article  CAS  Google Scholar 

  3. Eberhardt WE, Pottgen C, Gauler TC, Friedel G, Veit S, Heinrich V et al. Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J clin oncol 2015; 33: 4194–4201.

    Article  CAS  Google Scholar 

  4. Choy H, Pyo H, Kim JS, MacRae R . Role of taxanes in the combined modality treatment of patients with locally advanced non-small cell lung cancer. Expert Opin Pharmacother 2001; 2: 963–974.

    Article  CAS  Google Scholar 

  5. Horwitz SB, Lothstein L, Manfredi JJ, Mellado W, Parness J, Roy SN et al. Taxol: mechanisms of action and resistance. Ann NY Acad Sci 1986; 466: 733–744.

    Article  CAS  Google Scholar 

  6. Liebmann J, Cook JA, Fisher J, Teague D, Mitchell JB . In vitro studies of Taxol as a radiation sensitizer in human tumor cells. J Natl Cancer Inst 1994; 86: 441–446.

    Article  CAS  Google Scholar 

  7. Pawlik TM, Keyomarsi K . Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59: 928–942.

    Article  Google Scholar 

  8. Bhalla KN . Microtubule-targeted anticancer agents and apoptosis. Oncogene 2003; 22: 9075–9086.

    Article  CAS  Google Scholar 

  9. Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ et al. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 2014; 6: 229ra243.

    Article  Google Scholar 

  10. Demidenko ZN, Kalurupalle S, Hanko C, Lim CU, Broude E, Blagosklonny MV . Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis. Oncogene 2008; 27: 4402–4410.

    Article  CAS  Google Scholar 

  11. Dey S, Spring PM, Arnold S, Valentino J, Chendil D, Regine WF et al. Low-dose fractionated radiation potentiates the effects of Paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin cancer res 2003; 9: 1557–1565.

    CAS  PubMed  Google Scholar 

  12. Giannakakou P, Robey R, Fojo T, Blagosklonny MV . Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene 2001; 20: 3806–3813.

    Article  CAS  Google Scholar 

  13. Steren A, Sevin BU, Perras J, Ramos R, Angioli R, Nguyen H et al. Taxol as a radiation sensitizer: a flow cytometric study. Gynecol Oncol 1993; 50: 89–93.

    Article  CAS  Google Scholar 

  14. Kurdoglu B, Cheong N, Guan J, Corn BW, Curran WJ Jr, Iliakis G . Apoptosis as a predictor of paclitaxel-induced radiosensitization in human tumor cell lines. Clin cancer res 1999; 5: 2580–2587.

    CAS  PubMed  Google Scholar 

  15. Wang H, Liang L, Fang JY, Xu J . Somatic gene copy number alterations in colorectal cancer: new quest for cancer drivers and biomarkers. Oncogene 2016; 35: 2011–2019.

    Article  CAS  Google Scholar 

  16. Goldenson B, Crispino JD . The aurora kinases in cell cycle and leukemia. Oncogene 2015; 34: 537–545.

    Article  CAS  Google Scholar 

  17. Neumayer G, Belzil C, Gruss OJ, Nguyen MD . TPX2: of spindle assembly, DNA damage response, and cancer. Cell Mol Life Sci 2014; 71: 3027–3047.

    Article  CAS  Google Scholar 

  18. Sillars-Hardebol AH, Carvalho B, Tijssen M, Belien JA, de Wit M, Delis-van Diemen PM et al. TPX2 and AURKA promote 20q amplicon-driven colorectal adenoma to carcinoma progression. Gut 2012; 61: 1568–1575.

    Article  CAS  Google Scholar 

  19. Yang G, Chang B, Yang F, Guo X, Cai KQ, Xiao XS et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin cancer res 2010; 16: 3171–3181.

    Article  CAS  Google Scholar 

  20. Warner SL, Stephens BJ, Nwokenkwo S, Hostetter G, Sugeng A, Hidalgo M et al. Validation of TPX2 as a potential therapeutic target in pancreatic cancer cells. Clin cancer res 2009; 15: 6519–6528.

    Article  CAS  Google Scholar 

  21. Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell death differ 2015; 22: 58–73.

    Article  CAS  Google Scholar 

  22. Steigemann P, Wurzenberger C, Schmitz MH, Held M, Guizetti J, Maar S et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 2009; 136: 473–484.

    Article  Google Scholar 

  23. Ho LH, Read SH, Dorstyn L, Lambrusco L, Kumar S . Caspase-2 is required for cell death induced by cytoskeletal disruption. Oncogene 2008; 27: 3393–3404.

    Article  CAS  Google Scholar 

  24. Mhaidat NM, Wang Y, Kiejda KA, Zhang XD, Hersey P . Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2. Mol cancer therapeut 2007; 6: 752–761.

    Article  CAS  Google Scholar 

  25. Choy H . Taxanes in combined modality therapy for solid tumors. Crit Rev Oncol Hematol 2001; 37: 237–247.

    Article  CAS  Google Scholar 

  26. Asteriti IA, Rensen WM, Lindon C, Lavia P, Guarguaglini G . The Aurora-A/TPX2 complex: a novel oncogenic holoenzyme? Biochim Biophys Acta 2010; 1806: 230–239.

    CAS  PubMed  Google Scholar 

  27. Gruss OJ, Wittmann M, Yokoyama H, Pepperkok R, Kufer T, Sillje H et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 2002; 4: 871–879.

    Article  CAS  Google Scholar 

  28. Morgan-Lappe SE, Tucker LA, Huang X, Zhang Q, Sarthy AV, Zakula D et al. Identification of Ras-related nuclear protein, targeting protein for xenopus kinesin-like protein 2, and stearoyl-CoA desaturase 1 as promising cancer targets from an RNAi-based screen. Cancer res 2007; 67: 4390–4398.

    Article  CAS  Google Scholar 

  29. Giubettini M, Asteriti IA, Scrofani J, De Luca M, Lindon C, Lavia P et al. Control of Aurora-A stability through interaction with TPX2. J Cell Sci 2011; 124: 113–122.

    Article  CAS  Google Scholar 

  30. Dutertre S, Descamps S, Prigent C . On the role of aurora-A in centrosome function. Oncogene 2002; 21: 6175–6183.

    Article  CAS  Google Scholar 

  31. Terasima T, Tolmach LJ . X-ray sensitivity and DNA synthesis in synchronous populations of HeLa cells. Science 1963; 140: 490–492.

    Article  CAS  Google Scholar 

  32. Sinclair WK, Morton RA . X-ray sensitivity during the cell generation cycle of cultured Chinese hamster cells. Radiat Res 1966; 29: 450–474.

    Article  CAS  Google Scholar 

  33. Panier S, Durocher D . Push back to respond better: regulatory inhibition of the DNA double-strand break response. Nat rev Mol cell biol 2013; 14: 661–672.

    Article  CAS  Google Scholar 

  34. Martens-de Kemp SR, Nagel R, Stigter-van Walsum M, van der Meulen IH, van Beusechem VW, Braakhuis BJ et al. Functional genetic screens identify genes essential for tumor cell survival in head and neck and lung cancer. Clin cancer res 2013; 19: 1994–2003.

    Article  CAS  Google Scholar 

  35. Xu J, Yue CF, Zhou WH, Qian YM, Zhang Y, Wang SW et al. Aurora-A contributes to cisplatin resistance and lymphatic metastasis in non-small cell lung cancer and predicts poor prognosis. J Transl Med 2014; 12: 200.

    Article  Google Scholar 

  36. Anand S, Penrhyn-Lowe S, Venkitaraman AR . AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer cell 2003; 3: 51–62.

    Article  CAS  Google Scholar 

  37. Mignogna C, Staropoli N, Botta C, De Marco C, Rizzuto A, Morelli M et al. Aurora Kinase A expression predicts platinum-resistance and adverse outcome in high-grade serous ovarian carcinoma patients. J Ovarian Res 2016; 9: 31.

    Article  Google Scholar 

  38. Hata T, Furukawa T, Sunamura M, Egawa S, Motoi F, Ohmura N et al. RNA interference targeting aurora kinase a suppresses tumor growth and enhances the taxane chemosensitivity in human pancreatic cancer cells. Cancer res 2005; 65: 2899–2905.

    Article  CAS  Google Scholar 

  39. Eyers PA, Erikson E, Chen LG, Maller JL . A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 2003; 13: 691–697.

    Article  CAS  Google Scholar 

  40. Kufer TA, Sillje HH, Korner R, Gruss OJ, Meraldi P, Nigg EA . Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002; 158: 617–623.

    Article  CAS  Google Scholar 

  41. Tsai MY, Wiese C, Cao K, Martin O, Donovan P, Ruderman J et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 2003; 5: 242–248.

    Article  CAS  Google Scholar 

  42. Garrido G, Vernos I . Non-centrosomal TPX2-dependent regulation of the Aurora A kinase: functional implications for healthy and pathological cell division. Front Oncol 2016; 6: 88.

    Article  Google Scholar 

  43. Bian M, Fu J, Yan Y, Chen Q, Yang C, Shi Q et al. Short exposure to paclitaxel induces multipolar spindle formation and aneuploidy through promotion of acentrosomal pole assembly. Sci China Life Sci 2010; 53: 1322–1329.

    Article  CAS  Google Scholar 

  44. Scharer CD, Laycock N, Osunkoya AO, Logani S, McDonald JF, Benigno BB et al. Aurora kinase inhibitors synergize with paclitaxel to induce apoptosis in ovarian cancer cells. J Transl Med 2008; 6: 79.

    Article  Google Scholar 

  45. Mazumdar A, Henderson YC, El-Naggar AK, Sen S, Clayman GL . Aurora kinase A inhibition and paclitaxel as targeted combination therapy for head and neck squamous cell carcinoma. Head Neck 2009; 31: 625–634.

    Article  Google Scholar 

  46. Lin Y, Richards FM, Krippendorff BF, Bramhall JL, Harrington JA, Bapiro TE et al. Paclitaxel and CYC3, an aurora kinase A inhibitor, synergise in pancreatic cancer cells but not bone marrow precursor cells. Br J Cancer 2012; 107: 1692–1701.

    Article  CAS  Google Scholar 

  47. Sehdev V, Katsha A, Ecsedy J, Zaika A, Belkhiri A, El-Rifai W . The combination of alisertib, an investigational Aurora kinase A inhibitor, and docetaxel promotes cell death and reduces tumor growth in preclinical cell models of upper gastrointestinal adenocarcinomas. Cancer 2013; 119: 904–914.

    Article  CAS  Google Scholar 

  48. Manfredi MG, Ecsedy JA, Chakravarty A, Silverman L, Zhang M, Hoar KM et al. Characterization of Alisertib (MLN8237), an investigational small-molecule inhibitor of aurora A kinase using novel in vivo pharmacodynamic assays. Clin cancer res 2011; 17: 7614–7624.

    Article  CAS  Google Scholar 

  49. Zullo KM, Guo Y, Cooke L, Jirau-Serrano X, Mangone M, Scotto L et al. Aurora A Kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T-cell lymphoma. Clin cancer res 2015; 21: 4097–4109.

    Article  CAS  Google Scholar 

  50. Unkel S, Belka C, Lauber K . On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model. Radiat oncol 2016; 11: 11.

    Article  Google Scholar 

  51. Kinzel L, Ernst A, Orth M, Albrecht V, Hennel R, Brix N et al. A novel HSP90 inhibitor with reduced hepatotoxicity synergizes with radiotherapy to induce apoptosis, abrogate clonogenic survival, and improve tumor control in models of colorectal cancer. Oncotarget 2016; 7: 43199–43219.

    Article  Google Scholar 

  52. Lauber K, Appel HA, Schlosser SF, Gregor M, Schulze-Osthoff K, Wesselborg S . The adapter protein apoptotic protease-activating factor-1 (Apaf-1) is proteolytically processed during apoptosis. J Biol Chem 2001; 276: 29772–29781.

    Article  CAS  Google Scholar 

  53. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv enzyme regul 1984; 22: 27–55.

    Article  CAS  Google Scholar 

  54. Ernst A, Anders H, Kapfhammer H, Orth M, Hennel R, Seidl K et al. HSP90 inhibition as a means of radiosensitizing resistant, aggressive soft tissue sarcomas. Cancer lett 2015; 365: 211–222.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Olaf Stemmann for the stably transfected HeLa cell line and the centrin antibody, and Oliver J. Gruss for TPX2 antisera. This work was supported by grants of the Friedrich-Baur-Stiftung and the Verein zur Förderung von Wissenschaft und Forschung to MO and CB.

Author contributions

Conception and design: M. Orth, K. Lauber; Development of methodology: M. Orth, K. Unger, K. Lauber; Acquisition of data: M. Orth, K. Unger, U. Schoetz, K. Lauber; Analysis and interpretation of data: M. Orth, K. Unger, U. Schoetz, K. Lauber; Writing and revision of manuscript: M. Orth, K. Unger, U. Schoetz, C. Belka, K. Lauber.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Lauber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orth, M., Unger, K., Schoetz, U. et al. Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2. Oncogene 37, 52–62 (2018). https://doi.org/10.1038/onc.2017.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.304

This article is cited by

Search

Quick links