Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Co-dependency of PKCδ and K-Ras: inverse association with cytotoxic drug sensitivity in KRAS mutant lung cancer

Abstract

Recent studies suggest that the presence of a KRAS mutation may be insufficient for defining a clinically homogenous molecular group, as many KRAS mutant tumors lose reliance on K-Ras for survival. Identifying pathways that support K-Ras dependency may define clinically relevant KRAS subgroups and lead to the identification of new drug targets. We have analyzed a panel of 17 KRAS mutant lung cancer cell lines classified as K-Ras-dependent or -independent for co-dependency on protein kinase C δ (PKCδ). We show that functional dependency on K-Ras and PKCδ co-segregate, and that dependency correlates with a more epithelial-like phenotype. Furthermore, we show that the pro-apoptotic and pro-tumorigenic functions of PKCδ also segregate based on K-Ras dependency, as K-Ras-independent cells are more sensitive to topoisomerase inhibitors, and depletion of PKCδ in this subgroup suppresses apoptosis through increased activation of extracellular signal-regulated kinase (ERK). In contrast, K-Ras-dependent lung cancer cells are largely insensitive to topoisomerase inhibitors, and depletion of PKCδ can increase apoptosis and decrease activation of ERK in this subgroup. We have previously shown that nuclear translocation of PKCδ is necessary and sufficient for pro-apoptotic signaling. Our current studies show that K-Ras-dependent cells are refractive to PKCδ-driven apoptosis. Analysis of this subgroup showed increased PKCδ expression and an increase in the nuclear:cytoplasmic ratio of PKCδ. In addition, targeting PKCδ to the nucleus induces apoptosis in K-Ras-independent, but not K-Ras-dependent non-small-cell lung cancer (NSCLC) cells. Our studies provide tools for identification of the subset of patients with KRAS mutant tumors most amenable to targeting of the K-Ras pathway, and identify PKCδ as a potential target in this tumor population. These subgroups are likely to be of clinical relevance, as high PKCδ expression correlates with increased overall survival and a more epithelial tumor phenotype in patients with KRAS mutant lung adenocarcinomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Beau-Faller M, Legrain M, Voegeli AC, Guerin E, Lavaux T, Ruppert AM et al. Detection of K-Ras mutations in tumour samples of patients with non-small cell lung cancer using PNA-mediated PCR clamping. Br J Cancer 2009; 100: 985–992.

    Article  CAS  Google Scholar 

  2. Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N et al. A gene expression signature associated with ‘K-Ras addiction’ reveals regulators of EMT and tumor cell survival. Cancer Cell 2009; 15: 489–500.

    Article  CAS  Google Scholar 

  3. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 2011; 17: 500–503.

    Article  CAS  Google Scholar 

  4. McCormick F . KRAS as a therapeutic target. Clin Cancer Res 2015; 21: 1797–1801.

    Article  CAS  Google Scholar 

  5. Janne PA, Shaw AT, Pereira JR, Jeannin G, Vansteenkiste J, Barrios C et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 2013; 14: 38–47.

    Article  Google Scholar 

  6. Xia S, Chen Z, Forman LW, Faller DV . PKCdelta survival signaling in cells containing an activated p21Ras protein requires PDK1. Cell Signal 2009; 21: 502–508.

    Article  CAS  Google Scholar 

  7. Xia S, Forman LW, Faller DV . Protein kinase C delta is required for survival of cells expressing activated p21RAS. J Biol Chem 2007; 282: 13199–13210.

    Article  CAS  Google Scholar 

  8. Symonds JM, Ohm AM, Tan AC, Reyland ME . PKCdelta regulates integrin alphaVbeta3 expression and transformed growth of K-ras dependent lung cancer cells. Oncotarget 2016; 7: 17905–17919.

    Article  Google Scholar 

  9. Symonds JM, Ohm AM, Carter CJ, Heasley LE, Boyle TA, Franklin WA et al. Protein kinase C delta is a downstream effector of oncogenic K-ras in lung tumors. Cancer Res 2011; 71: 2087–2097.

    Article  CAS  Google Scholar 

  10. Reyland ME, Jones DN . Multifunctional roles of PKCdelta: opportunities for targeted therapy in human disease. Pharmacol Ther 2016; 165: 1–13.

    Article  CAS  Google Scholar 

  11. Garg R, Benedetti LG, Abera MB, Wang H, Abba M, Kazanietz MG . Protein kinase C and cancer: what we know and what we do not. Oncogene 2014; 33: 5225–5237.

    Article  CAS  Google Scholar 

  12. Nguyen HM, Reyland ME, Barlow LA . Mechanisms of taste bud cell loss after head and neck irradiation. J Neurosci 2012; 32: 3474–3484.

    Article  CAS  Google Scholar 

  13. Allen-Petersen BL, Miller MR, Neville MC, Anderson SM, Nakayama KI, Reyland ME . Loss of protein kinase C delta alters mammary gland development and apoptosis. Cell Death Dis 2010; 1: e17.

    Article  CAS  Google Scholar 

  14. Humphries MJ, Limesand KH, Schneider JC, Nakayama KI, Anderson SM, Reyland ME . Suppression of apoptosis in the protein kinase C delta null mouse in vivo. J Biol Chem 2006; 281: 9728–9737.

    Article  CAS  Google Scholar 

  15. Allen-Petersen BL, Carter CJ, Ohm AM, Reyland ME . Protein kinase C delta is required for ErbB2-driven mammary gland tumorigenesis and negatively correlates with prognosis in human breast cancer. Oncogene 2014; 33: 1306–1315.

    Article  CAS  Google Scholar 

  16. Mauro LV, Grossoni VC, Urtreger AJ, Yang C, Colombo LL, Morandi A et al. PKC Delta (PKCdelta) promotes tumoral progression of human ductal pancreatic cancer. Pancreas 2010; 39: e31–e41.

    Article  CAS  Google Scholar 

  17. Jackson D, Zheng Y, Lyo D, Shen Y, Nakayama K, Nakayama KI et al. Suppression of cell migration by protein kinase C delta. Oncogene 2005; 24: 3067–3072.

    Article  CAS  Google Scholar 

  18. Kho DH, Bae JA, Lee JH, Cho HJ, Cho SH, Lee JH et al. KITENIN recruits dishevelled/PKC delta to form a functional complex and controls the migration and invasiveness of colorectal cancer cells. Gut 2009; 58: 509–519.

    Article  CAS  Google Scholar 

  19. Paugh BS, Paugh SW, Bryan L, Kapitonov D, Wilczynska KM, Gopalan SM et al. EGF regulates plasminogen activator inhibitor-1 (PAI-1) by a pathway involving c-Src, PKCdelta, and sphingosine kinase 1 in glioblastoma cells. FASEB J 2008; 22: 455–465.

    Article  CAS  Google Scholar 

  20. Kharait S, Dhir R, Lauffenburger D, Wells A . Protein kinase C delta signaling downstream of the EGF receptor mediates migration and invasiveness of prostate cancer cells. Biochem Biophys Res Commun 2006; 343: 848–856.

    Article  CAS  Google Scholar 

  21. Bailey TA, Luan H, Tom E, Bielecki TA, Mohapatra B, Ahmad G et al. A kinase inhibitor screen reveals protein kinase C-dependent endocytic recycling of ErbB2 in breast cancer cells. J Biol Chem 2014; 289: 30443–30458.

    Article  CAS  Google Scholar 

  22. Hu CT, Cheng CC, Pan SM, Wu JR, Wu WS . PKC mediates fluctuant ERK-paxillin signaling for hepatocyte growth factor-induced migration of hepatoma cell HepG2. Cell Signal 2013; 25: 1457–1467.

    Article  CAS  Google Scholar 

  23. Park M, Kim WK, Song M, Park M, Kim H, Nam HJ et al. Protein kinase C-delta-mediated recycling of active KIT in colon cancer. Clin Cancer Res 2013; 19: 4961–4971.

    Article  CAS  Google Scholar 

  24. Reyland ME, Barzen KA, Anderson SM, Quissell DO, Matassa AA . Activation of PKC is sufficient to induce an apoptotic program in salivary gland acinar cells. Cell Death Differ 2000; 7: 1200–1209.

    Article  CAS  Google Scholar 

  25. Matassa AA, Carpenter L, Biden TJ, Humphries MJ, Reyland ME . PKCdelta is required for mitochondrial-dependent apoptosis in salivary epithelial cells. J Biol Chem 2001; 276: 29719–29728.

    Article  CAS  Google Scholar 

  26. Yoshida K . Nuclear trafficking of pro-apoptotic kinases in response to DNA damage. Trends Mol Med 2008; 14: 305–313.

    Article  CAS  Google Scholar 

  27. Mogi A, Kuwano H . TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol 2011; 2011: 583929.

    Article  Google Scholar 

  28. Osaki S, Nakanishi Y, Takayama K, Pei XH, Ueno H, Hara N . Alteration of drug chemosensitivity caused by the adenovirus-mediated transfer of the wild-type p53 gene in human lung cancer cells. Cancer Gene Ther 2000; 7: 300–307.

    Article  CAS  Google Scholar 

  29. Kolb RH, Greer PM, Cao PT, Cowan KH, Yan Y . ERK1/2 signaling plays an important role in topoisomerase II poison-induced G2/M checkpoint activation. PloS One 2012; 7: e50281.

    Article  CAS  Google Scholar 

  30. DeVries-Seimon TA, Ohm AM, Humphries MJ, Reyland ME . Induction of apoptosis is driven by nuclear retention of protein kinase C delta. J Biol Chem 2007; 282: 22307–22314.

    Article  CAS  Google Scholar 

  31. Adwan TS, Ohm AM, Jones DN, Humphries MJ, Reyland ME . Regulated binding of importin-alpha to protein kinase Cdelta in response to apoptotic signals facilitates nuclear import. J Biol Chem 2011; 286: 35716–35724.

    Article  CAS  Google Scholar 

  32. Humphries MJ, Ohm AM, Schaack J, Adwan TS, Reyland ME . Tyrosine phosphorylation regulates nuclear translocation of PKCdelta. Oncogene 2008; 27: 3045–3053.

    Article  CAS  Google Scholar 

  33. Wie SM, Adwan TS, DeGregori J, Anderson SM, Reyland ME . Inhibiting tyrosine phosphorylation of protein kinase Cdelta (PKCdelta) protects the salivary gland from radiation damage. J Biol Chem 2014; 289: 10900–10908.

    Article  CAS  Google Scholar 

  34. DeVries TA, Neville MC, Reyland ME . Nuclear import of PKCdelta is required for apoptosis: identification of a novel nuclear import sequence. EMBO J 2002; 21: 6050–6060.

    Article  CAS  Google Scholar 

  35. Riely GJ, Marks J, Pao W . KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc 2009; 6: 201–205.

    Article  CAS  Google Scholar 

  36. Pagliarini R, Shao W, Sellers WR . Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep 2015; 16: 280–296.

    Article  CAS  Google Scholar 

  37. LaGory EL, Sitailo LA, Denning MF . The protein kinase C delta catalytic fragment is critical for maintenance of the G2/M DNA damage checkpoint. J Biol Chem 2010; 285: 1879–1887.

    Article  CAS  Google Scholar 

  38. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S . Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J Biol Chem 1996; 271: 23512–23519.

    Article  CAS  Google Scholar 

  39. Koo KH, Jeong WJ, Cho YH, Park JC, Min DS, Choi KY . K-Ras stabilization by estrogen via PKC delta is involved in endometrial tumorigenesis. Oncotarget 2015; 6: 21328–21340.

    PubMed  PubMed Central  Google Scholar 

  40. Antal CE, Hudson AM, Kang E, Zanca C, Wirth C, Stephenson NL et al. Cancer-associated protein kinase C mutations reveal kinase's role as tumor suppressor. Cell 2015; 160: 489–502.

    Article  CAS  Google Scholar 

  41. D'Costa AM, Robinson JK, Maududi T, Chaturvedi V, Nickoloff BJ, Denning MF . The proapoptotic tumor suppressor protein kinase C-delta is lost in human squamous cell carcinomas. Oncogene 2006; 25: 378–386.

    Article  CAS  Google Scholar 

  42. Reno EM, Haughian JM, Dimitrova IK, Jackson TA, Shroyer KR, Bradford AP . Analysis of protein kinase C delta (PKC delta) expression in endometrial tumors. Hum Pathol 2008; 39: 21–29.

    Article  CAS  Google Scholar 

  43. Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 2012; 150: 1107–1120.

    Article  CAS  Google Scholar 

  44. Young A, Lou D, McCormick F . Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling. Cancer Discov 2013; 3: 112–123.

    Article  CAS  Google Scholar 

  45. Cai Q, Li J, Gao T, Xie J, Evers BM . Protein kinase C delta negatively regulates hedgehog signaling by inhibition of Gli1 activity. J Biol Chem 2009; 284: 2150–2158.

    Article  CAS  Google Scholar 

  46. Zhu T, Tsuji T, Chen C . Roles of PKC isoforms in the induction of apoptosis elicited by aberrant Ras. Oncogene 2010; 29: 1050–1061.

    Article  CAS  Google Scholar 

  47. Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 2009; 137: 835–848.

    Article  CAS  Google Scholar 

  48. Wilson FH, Johannessen CM, Piccioni F, Tamayo P, Kim JW, Van Allen EM et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell 2015; 27: 397–408.

    Article  CAS  Google Scholar 

  49. Prior IA, Lewis PD, Mattos C . A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72: 2457–2467.

    Article  CAS  Google Scholar 

  50. Singh A, Settleman J . Oncogenic K-ras ‘addiction’ and synthetic lethality. Cell Cycle 2009; 8: 2676–2677.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the intellectual contributions of Dr Ross Camidge. This work was supported by a United Against Lung Cancer research award, a pilot grant from NIH Lung SPORE Grant P50 CA58187 and R01DE015648 to MER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M E Reyland.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohm, A., Tan, AC., Heasley, L. et al. Co-dependency of PKCδ and K-Ras: inverse association with cytotoxic drug sensitivity in KRAS mutant lung cancer. Oncogene 36, 4370–4378 (2017). https://doi.org/10.1038/onc.2017.27

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.27

This article is cited by

Search

Quick links