Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ

Abstract

Type Iγ phosphatidylinositol phosphate kinase (PIPKIγ), a phospholipid kinase generating PIP2, is positively expressed in breast cancer tissues, which correlates intimately with the progression of patients. However, little is known about the expression level of PIPKIγ in patients with other cancer types as well as their underlying regulation mechanisms. Here, we report that PIPKIγ is highly expressed in lung cancer tissues and its expression level is critical for lung cancer cell proliferation, which may serve as a prognostic marker for lung cancer patients. Meanwhile, we show that E3 ubiquitin ligase Smurf1 directly interacts with PIPKIγ and targets PIPKIγ for ubiquitination and degradation in lung cancer cells. Also, we discover that Smurf1 directly binds to the kinase domain of PIPKIγ via its C2 domain while Lysine 255 in PIPKIγ acts as the major ubiquitin acceptor site for Smurf1. In addition, we demonstrate that the phosphorylation mimicking mutant of Smurf1, Smurf1 T306D, prevents PIPKIγi2 from ubiquitination and subsequent degradation similar to the effect of forskolin-potentiated cAMP formation, suggesting that Thr306 in Smurf1 is critical for its phosphorylation by PKA. Moreover, PKA-Smurf1-PIPKIγ signal transduction takes a significant part in lung cancer cell growth and in vivo tumorigenesis. Thus, we propose that the PKA-Smurf1-PIPKIγ pathway has an important role in pulmonary tumorigenesis and imposes substantial clinical impact on development of novel diagnostic markers and therapeutic targets for lung cancer treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Doughman RL, Firestone AJ, Anderson RA . Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place. J Membr Biol 2003; 194: 77–89.

    Article  CAS  Google Scholar 

  2. Schill NJ, Anderson RA . Out, in and back again: PtdIns(4,5)P(2) regulates cadherin trafficking in epithelial morphogenesis. Biochem J 2009; 418: 247–260.

    Article  CAS  Google Scholar 

  3. Ling K, Schill NJ, Wagoner MP, Sun Y, Anderson RA . Movin' on up: the role of PtdIns(4,5)P(2) in cell migration. Trends Cell Biol 2006; 16: 276–284.

    Article  CAS  Google Scholar 

  4. Yoon Y, Zhang X, Cho W . Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) specifically induces membrane penetration and deformation by Bin/amphiphysin/Rvs (BAR) domains. J Biol Chem 2012; 287: 34078–34090.

    Article  CAS  Google Scholar 

  5. Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T et al. Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 1996; 271: 23611–23614.

    Article  CAS  Google Scholar 

  6. Di Paolo G, Pellegrini L, Letinic K, Cestra G, Zoncu R, Voronov S et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1gamma by the FERM domain of talin. Nature 2002; 420: 85–89.

    Article  CAS  Google Scholar 

  7. Heck JN, Mellman DL, Ling K, Sun Y, Wagoner MP, Schill NJ et al. A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family. Crit Rev Biochem Mol Biol 2007; 42: 15–39.

    Article  CAS  Google Scholar 

  8. Ling K, Bairstow SF, Carbonara C, Turbin DA, Huntsman DG, Anderson RA . Type I gamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin. J Cell Biol 2007; 176: 343–353.

    Article  CAS  Google Scholar 

  9. Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA . Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002; 420: 89–93.

    Article  CAS  Google Scholar 

  10. Xu W, Wang P, Petri B, Zhang Y, Tang W, Sun L et al. Integrin-induced PIP5K1C kinase polarization regulates neutrophil polarization, directionality, and in vivo infiltration. Immunity 2010; 33: 340–350.

    Article  CAS  Google Scholar 

  11. Sun Y, Turbin DA, Ling K, Thapa N, Leung S, Huntsman DG et al. Type I gamma phosphatidylinositol phosphate kinase modulates invasion and proliferation and its expression correlates with poor prognosis in breast cancer. Breast Cancer Res 2010; 12: R6.

    Article  Google Scholar 

  12. Chen C, Wang X, Xiong X, Liu Q, Huang Y, Xu Q et al. Targeting type Iγ phosphatidylinositol phosphate kinase inhibits breast cancer metastasis. Oncogene 2015; 34: 4635–4646.

    Article  CAS  Google Scholar 

  13. Thapa N, Tan X, Choi S, Wise T, Anderson RA . PIPKIγ and talin couple phosphoinositide and adhesion signaling to control the epithelial to mesenchymal transition. Oncogene 2016; 36: 899–911.

    Article  Google Scholar 

  14. Nader GPF, Ezratty EJ, Gundersen GG . FAK, talin and PIPKIγ regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol 2016; 18: 491–503.

    Article  CAS  Google Scholar 

  15. Li X, Zhou Q, Sunkara M, Kutys ML, Wu Z, Rychahou P et al. Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I gamma by HECTD1 regulates focal adhesion dynamics and cell migration. J Cell Sci 2013; 126: 2617–2628.

    Article  CAS  Google Scholar 

  16. Wieffer M, Haucke V, Krauss M . Regulation of phosphoinositide-metabolizing enzymes by clathrin coat proteins. Methods Cell Biol 2012; 108: 209–225.

    Article  CAS  Google Scholar 

  17. Krauss M, Kinuta M, Wenk MR, De Camilli P, Takei K, Haucke V . ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma. J Cell Biol 2003; 162: 113–124.

    Article  CAS  Google Scholar 

  18. Bairstow SF, Ling K, Su X, Firestone AJ, Carbonara C, Anderson RA . Type Igamma661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis. J Biol Chem 2006; 281: 20632–20642.

    Article  CAS  Google Scholar 

  19. Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P . Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J Cell Biol 2005; 168: 789–799.

    Article  CAS  Google Scholar 

  20. Nader GP, Ezratty EJ, Gundersen GG . FAK, talin and PIPKIgamma regulate endocytosed integrin activation to polarize focal adhesion assembly. Nat Cell Biol 2016; 18: 491–503.

    Article  CAS  Google Scholar 

  21. Ling K, Doughman RL, Iyer VV, Firestone AJ, Bairstow SF, Mosher DF et al. Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch. J Cell Biol 2003; 163: 1339–1349.

    Article  CAS  Google Scholar 

  22. Akieda-Asai S, Zaima N, Ikegami K, Kahyo T, Yao I, Hatanaka T et al. SIRT1 regulates thyroid-stimulating hormone release by enhancing PIP5Kgamma activity through deacetylation of specific lysine residues in mammals. PloS One 2010; 5: e11755.

    Article  Google Scholar 

  23. Le OT, Cho OY, Tran MH, Kim JA, Chang S, Jou I et al. Phosphorylation of phosphatidylinositol 4-phosphate 5-kinase gamma by Akt regulates its interaction with talin and focal adhesion dynamics. Biochim Biophys Acta 2015; 1853: 2432–2443.

    Article  CAS  Google Scholar 

  24. Jafari N, Zheng Q, Li L, Li W, Qi L, Xiao J et al. p70S6K1 (S6K1)-mediated phosphorylation regulates phosphatidylinositol 4-phosphate 5-kinase type I gamma degradation and cell invasion. J Biol Chem 2016; 291: 25729–25741.

    Article  CAS  Google Scholar 

  25. Rechsteiner M . Ubiquitin-mediated pathways for intracellular proteolysis. Annu Rev Cell Biol 1987; 3: 1–30.

    Article  CAS  Google Scholar 

  26. Nakayama KI, Nakayama K . Ubiquitin ligases: cell-cycle control and cancer. Nat Rev Cancer 2006; 6: 369–381.

    Article  CAS  Google Scholar 

  27. Williamson A, Werner A, Rape M . The Colossus of ubiquitylation: decrypting a cellular code. Mol Cell 2013; 49: 591–600.

    Article  CAS  Google Scholar 

  28. Rotin D, Kumar S . Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10: 398–409.

    Article  CAS  Google Scholar 

  29. Cao Y, Zhang L . A Smurf1 tale: function and regulation of an ubiquitin ligase in multiple cellular networks. Cell Mol Life Sci 2013; 70: 2305–2317.

    Article  CAS  Google Scholar 

  30. Sangadala S, Rao Metpally RP, BR. BV . Molecular interaction between Smurfl WW2 domain and PPXY motifs of Smadl, Smad5, and Smad6-modeling and analysis. J Biomol Struct Dyn 2007; 25: 11–23.

    Article  CAS  Google Scholar 

  31. Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T et al. Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane. J Biol Chem 2002; 277: 39919–39925.

    Article  CAS  Google Scholar 

  32. Yamaguchi K, Ohara O, Ando A, Nagase T . Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway. Biol Chem 2008; 389: 405–413.

    Article  CAS  Google Scholar 

  33. Lu K, Li P, Zhang M, Xing G, Li X, Zhou W et al. Pivotal role of the C2 domain of the Smurf1 ubiquitin ligase in substrate selection. J Biol Chem 2011; 286: 16861–16870.

    Article  CAS  Google Scholar 

  34. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX et al. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell 2005; 121: 101–113.

    Article  CAS  Google Scholar 

  35. Blank M, Tang Y, Yamashita M, Burkett SS, Cheng SY, Zhang YE . A tumor suppressor function of Smurf2 associated with controlling chromatin landscape and genome stability through RNF20. Nat Med 2012; 18: 227–234.

    Article  CAS  Google Scholar 

  36. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304: 1497–1500.

    Article  CAS  Google Scholar 

  37. Ayoola A, Barochia A, Belani K, Belani CP . Primary and acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: an update. Cancer Invest 2012; 30: 433–446.

    Article  CAS  Google Scholar 

  38. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L et al. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 2008; 321: 1350–1353.

    Article  CAS  Google Scholar 

  39. Hu J, Yuan Q, Kang X, Qin Y, Li L, Ha Y et al. Resolution of structure of PIP5K1A reveals molecular mechanism for its regulation by dimerization and dishevelled. Nat Commun 2015; 6: 8205.

    Article  CAS  Google Scholar 

  40. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN et al. WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol 2011; 13: 728–733.

    Article  Google Scholar 

  41. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000; 6: 1365–1375.

    Article  CAS  Google Scholar 

  42. Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH . A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 1999; 400: 687–693.

    Article  CAS  Google Scholar 

  43. Lu K, Yin X, Weng T, Xi S, Li L, Xing G et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat Cell Biol 2008; 10: 994–1002.

    Article  CAS  Google Scholar 

  44. Wan L, Zou W, Gao D, Inuzuka H, Fukushima H, Berg AH et al. Cdh1 regulates osteoblast function through an APC/C-independent modulation of Smurf1. Mol Cell 2011; 44: 721–733.

    Article  CAS  Google Scholar 

  45. Loijens JC, Anderson RA . Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem 1996; 271: 32937–32943.

    Article  CAS  Google Scholar 

  46. Huang C, Rajfur Z, Yousefi N, Chen Z, Jacobson K, Ginsberg MH . Talin phosphorylation by Cdk5 regulates Smurf1-mediated talin head ubiquitylation and cell migration. Nat Cell Biol 2009; 11: 624–630.

    Article  CAS  Google Scholar 

  47. Cheng PL, Lu H, Shelly M, Gao H, Poo MM . Phosphorylation of E3 ligase Smurf1 switches its substrate preference in support of axon development. Neuron 2011; 69: 231–243.

    Article  CAS  Google Scholar 

  48. Goult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR et al. Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation. EMBO J 2010; 29: 1069–1080.

    Article  CAS  Google Scholar 

  49. Wang YJ, Li WH, Wang J, Xu K, Dong P, Luo X et al. Critical role of PIP5KI{gamma}87 in InsP3-mediated Ca(2+) signaling. J Cell Biol 2004; 167: 1005–1010.

    Article  CAS  Google Scholar 

  50. Wang Y, Lian L, Golden JA, Morrisey EE, Abrams CS . PIP5KI gamma is required for cardiovascular and neuronal development. Proc Natl Acad Sci USA 2007; 104: 11748–11753.

    Article  CAS  Google Scholar 

  51. Yu YL, Chou RH, Chen LT, Shyu WC, Hsieh SC, Wu CS et al. EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. J Biol Chem 2011; 286: 9657–9667.

    Article  CAS  Google Scholar 

  52. Kaur A, Webster MR, Marchbank K, Behera R, Ndoye A, Kugel CH 3rd et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 2016; 532: 250–254.

    Article  CAS  Google Scholar 

  53. Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 525: 543–547.

    Article  CAS  Google Scholar 

  54. Sasaki J, Sasaki T, Yamazaki M, Matsuoka K, Taya C, Shitara H et al. Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I {alpha}. J Exp Med 2005; 201: 859–870.

    Article  CAS  Google Scholar 

  55. Wang Y, Chen X, Lian L, Tang T, Stalker TJ, Sasaki T et al. Loss of PIP5KIbeta demonstrates that PIP5KI isoform-specific PIP2 synthesis is required for IP3 formation. Proc Natl Acad Sci U S A 2008; 105: 14064–14069.

    Article  CAS  Google Scholar 

  56. Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M et al. Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 2004; 431: 415–422.

    Article  CAS  Google Scholar 

  57. Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T et al. Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 1998; 273: 8741–8748.

    Article  CAS  Google Scholar 

  58. Giudici ML, Emson PC, Irvine RF . A novel neuronal-specific splice variant of Type I phosphatidylinositol 4-phosphate 5-kinase isoform gamma. Biochem J 2004; 379: 489–496.

    Article  CAS  Google Scholar 

  59. Schill NJ, Anderson RA . Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting. Biochem J 2009; 422: 473–482.

    Article  CAS  Google Scholar 

  60. Schill NJ, Hedman AC, Choi S, Anderson RA . Isoform 5 of PIPKIγ regulates the endosomal trafficking and degradation of E-cadherin. J Cell Sci 2014; 127: 2189–2203.

    Article  CAS  Google Scholar 

  61. Xia Y, Irvine RF, Giudici ML . Phosphatidylinositol 4-phosphate 5-kinase Igamma_v6, a new splice variant found in rodents and humans. Biochem Biophys Res Commun 2011; 411: 416–420.

    Article  CAS  Google Scholar 

  62. Leslie NR, Batty IH, Maccario H, Davidson L, Downes CP . Understanding PTEN regulation: PIP2, polarity and protein stability. Oncogene 2008; 27: 5464–5476.

    Article  CAS  Google Scholar 

  63. Chen Z, Thomas SN, Bolduc DM, Jiang X, Zhang X, Wolberger C et al. Enzymatic analysis of PTEN ubiquitylation by WWP2 and NEDD4-1 E3 ligases. Biochemistry 2016; 55: 3658–3666.

    Article  CAS  Google Scholar 

  64. Plant PJ, Yeger H, Staub O, Howard P, Rotin D . The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+-dependent plasma membrane localization. J Biol Chem 1997; 272: 32329–32336.

    Article  CAS  Google Scholar 

  65. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003; 302: 1775–1779.

    Article  CAS  Google Scholar 

  66. Sahai E, Garcia-Medina R, Pouyssegur J, Vial E . Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J Cell Biol 2007; 176: 35–42.

    Article  CAS  Google Scholar 

  67. Wiesner S, Ogunjimi AA, Wang H-R, Rotin D, Sicheri F, Wrana JL et al. Autoinhibition of the HECT-type ubiquitin ligase Smurf2 through its C2 domain. Cell 2007; 130: 651–662.

    Article  CAS  Google Scholar 

  68. Li B, Li H, Bai Y, Kirschner-Schwabe R, Yang JJ, Chen Y et al. Negative feedback–defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med 2015; 21: 563–571.

    Article  CAS  Google Scholar 

  69. Xiao N, Li H, Luo J, Wang R, Chen H, Chen J et al. Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J 2012; 441: 979–986.

    Article  CAS  Google Scholar 

  70. Liu N, Li H, Li S, Shen M, Xiao N, Chen Y et al. The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem 2010; 285: 18858–18867.

    Article  CAS  Google Scholar 

  71. Pan J, Deng Q, Jiang C, Wang X, Niu T, Li H et al. USP37 directly deubiquitinates and stabilizes c-Myc in lung cancer. Oncogene 2015; 34: 3957–3967.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Dianqing Wu, Jian Luo, Hongrui, Wang, and Lingqiang Zhang for kindly providing reagents. We also appreciate the assistance from other members of the lab. This work was supported by grants from National Basic Research Program of China (973 program 2012CB910404 and 2010CB529704), National Natural Science Foundation of China (30971521, 81502559, 81500112, 81602515, 81572645, 30800587 and 31171338), grant from the Science and Technology Commission of Shanghai Municipality (11DZ2260300) and the Science and Technology Commission of Pudong New Area Foundation (PKJ2016-Y37).

Author contributions

HL, YW, NX and XG designed the research; HL, YW and RW performed research; HL, YW, RW and XG analyzed the data; HL, NX and XG wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Ge.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Xiao, N., Wang, Y. et al. Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKIγ. Oncogene 36, 5668–5680 (2017). https://doi.org/10.1038/onc.2017.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.166

This article is cited by

Search

Quick links